
Integrity Checking of Function Pointers in
Kernel Pools via Virtual Machine Introspection

Irfan Ahmed, Golden G. Richard III, Aleksandar Zoranic, Vassil Roussev

Department of Computer Science, University of New Orleans
Lakefront Campus, New Orleans, LA 70148, United States

irfan.ahmed@uno.edu, golden@cs.uno.edu, azoranic@uno.edu, vassil@cs.uno.edu

Abstract. With the introduction of kernel integrity checking mecha-
nisms in modern operating systems, such as PatchGuard on Windows
OS, malware developers can no longer easily install stealthy hooks in
kernel code and well-known data structures. Instead, they must target
other areas of the kernel, such as the heap, which stores a large number of
function pointers that are potentially prone to malicious exploits. These
areas of kernel memory are currently not monitored by kernel integrity
checkers.

We present a novel approach to monitoring the integrity of Windows ker-
nel pools, based entirely on virtual machine introspection, called Hook-
Locator. Unlike prior efforts to maintain kernel integrity, our implemen-
tation runs entirely outside the monitored system, which makes it inher-
ently more difficult to detect and subvert. Our system also scales easily to
protect multiple virtualized targets. Unlike other kernel integrity check-
ing mechanisms, HookLocator does not require the source code of the
operating system, complex reverse engineering efforts, or the debugging
map files. Our empirical analysis of kernel heap behavior shows that in-
tegrity monitoring needs to focus only on a small fraction of it to be
effective; this allows our prototype to provide effective real-time moni-
toring of the protected system.

Keywords: virtual machine introspection; malware; operating systems.

1 Introduction

Malware (especially rootkits) often targets the kernel space of an operating sys-
tem (OS) for attacks [1], modifying kernel code and well-known data structures
such as the system service descriptor table (SSDT), interrupt descriptor table
(IDT), and import address table (IAT) to facilitate running malicious code. In
other words, malware of this type installs hooks, which enables it to control the
compromised system. For instance, such malware might hide the traces of in-
fection, such as a user-level malicious process, or introduce remote surveillance
functionality into the system, such as a keylogger.

This work was supported by the NSF grant CNS # 1016807.

Microsoft (MS) has introduced kernel patch protection (a.k.a. PatchGuard)
in 64-bit Windows (such as Windows 7/8) to protect the integrity of kernel code
and the data structures often targeted by traditional malware. It is implemented
in the OS kernel and protected by using anonymization techniques such as mis-
direction, misnamed functions and general code obfuscation. In the presence of
PatchGuard, it is hard for malware to directly install stealthy hooks in kernel
code or modify the data structures monitored by PatchGuard. In order to avoid
detection, modern malware has modified its targets to previously unexplored
data regions. In particular, it targets function pointers in the dynamically allo-
cated region in kernel space (a.k.a. kernel pools) [15],[16],[17]. Function pointers
refer to the entry point of a function or routine and by modifying a function
pointer, an attacker can cause malicious code to be executed instead of, or in
addition to, the intended code. A demonstration of this type of attack appears
in Yin et al. [2]. They created a keylogger by simply modifying function point-
ers corresponding to a keyboard driver in a kernel pool. Moreover, there are
thousands of function pointers in the Windows kernel pools, which provides an
attractive opportunity for an attacker to install stealthy hooks [2].

Current solutions such as SBCFI [3], Gibraltar [4], SFPD [5], and HookSafe
[6] check the integrity of function pointers by generating hook detection policy
and extracting information about function pointers by performing static analysis
of the kernel source code. For example, they obtain the definitions of the kernel
data structures that contain the pointers, and subsequently generate the traver-
sal graph used to reach the data structures containing the function pointers.
Unfortunately, these solutions are dependent on the availability of kernel source
code and thus not appropriate for closed source OSs such as MS Windows.

More recently, Yin et al. presented HookScout [2] for checking the integrity of
function pointers in MS Windows. It uses taint analysis [7] to trace the function
pointers in kernel memory, and generates a hook detection policy from the mem-
ory objects that hold the pointers. The tool learns about the function pointers
from a clean installation of the OS with typical user applications installed on
it. The effectiveness of HookScout depends on how much contextual information
is obtained about the function pointers during the learning phase. During the
detection phase, if a target machine is attacked via modification of a function
pointer not evaluated by HookScout during its learning phase, it will be unable
to check the function pointer integrity.

Importantly, HookScout was developed on a 32-bit Windows XP OS and its
current approach cannot be readily extended to 64-bit Windows 7:

– For detecting hooks, HookScout adds a jmp instruction at the entry point of
each function whose function pointer is being monitored. The jmp redirects
the execution to its own detection code. In 64-bit Windows 7, such patching
of functions is not possible due to PatchGuard.

– HookScout obtains a list of function pointers for analysis by disassembling
the MS Windows kernel in IDA Pro and traversing through the relocation
table to identify the absolute addresses of function pointers. This works on
32-bit Windows XP since Windows uses absolute addresses in the kernel to

2

refer to functions and thus an entry for such addresses exists in the relocation
table. However, 64-bit Windows 7 uses offsets from the current instruction
to refer to functions, because the code in 64-bit Windows is guaranteed to
be aligned on a 16-byte boundary [8]. Thus, the relocation table does not
contain entries for all the function pointers in kernel code.

– Finally, HookScout is implemented as a kernel module, which runs in the
kernel space being monitored in the target machine. Thus, it is prone to
subversion like any other security solution running inside a compromised
machine, a limitation acknowledged by the authors of HookScout.

In this paper, we present HookLocator for MS Windows, which checks the
integrity of function pointers in a virtualized environment and identifies func-
tion pointers that are maliciously modified in a kernel pool. HookLocator runs
in a privileged virtual machine and uses virtual machine introspection (VMI)
to access the physical memory of a target virtual machine (VM) running MS
Windows. Since HookLocator runs outside the target VM, it is less prone to
subversion and can obtain the list of function pointers directly from reliable
sources in the physical memory of the target machine (such as kernel code and
data structures monitored by PatchGuard), without disassembling kernel code
or traversing the relocation table. The list is then used to find the instances of
function pointers in kernel pool data. HookLocator does not require hooking to
obtain the kernel pool data; instead, it uses kernel data structures maintained by
Windows to track memory allocations to locate appropriate dynamic allocations
in kernel pools. Our tool does not require access to source code to learn contex-
tual information about function pointers; instead, it obtains all the information
directly from the physical memory of the target machine. Thus, it continues
learning from the target machine even during the monitoring phase, in order to
obtain new information about the pointers under scrutiny.

The main contributions of this work are as follows:

– We propose a new approach to obtain the list of function pointers to be
monitored directly from physical memory. The approach takes two mem-
ory snapshots of kernel code that are loaded into two different locations in
memory and uses the differences to locate candidate function pointers. The
locations are marked and then used to obtain the function pointers from the
in-memory kernel code of the target machine.

– We propose a VMI-based hook detection approach to check the integrity of
function pointers in kernel pools. The approach obtains the list of function
pointers and their context information directly from the physical memory of
the target system.

– We present a proof-of-concept prototype, HookLocator, for 64-bit Windows
7 to evaluate the effectiveness and efficiency of the approach.

– We thoroughly evaluate HookLocator on Windows 7 and identify a region
in kernel pool, which provides a non-pageable target-rich attack surface.
HookLocator is able to perform real-time monitoring on the region with a
negligible amount of memory overhead.

3

2 Related Work

In addition to HookScout, which represents the current state of the art, a number
of other techniques have been developed to combat kernel hijacking techniques.
Since the inclusion of PatchGuard within Microsoft Windows, rootkits are no
longer able to hook to kernel objects by modifying kernel code. This, in turn, has
changed malware hooking techniques by redirecting their subversion efforts to
the previously unexploited kernel heap. Therefore, much prior work has become
obsolete, and not up to the task of reliably detecting rootkits. Many of the
techniques, which we outline below, have substantial practical limitations as
they rely on source code availability and/or incur unacceptable performance
penalties.

Riley et al. implemented PoKeR[18], a rootkit behavior profiling engine. It
relies on the OS kernel source code for static analysis or debugging symbols and
type information for binary analysis. Furthermore, certain modules in PoKeR,
such as context tracking and logging, run inside the VM allowing malware to
tamper with such modules. PoKeR utilizes a resource intensive profiling engine,
which incurs a significant overhead and severely limits its practical deployment.

Yin et al. developed HookFinder [19], a method that uses dynamic analy-
sis of kernel code to identify and analyze malware hooks. Designed mostly for
analytical purposes, HookFinder does not constantly check for rootkit activity,
but rather provides a controlled experimental environment to analyze rootkits
in. The tool is relatively resource intensive and, therefore, potentially detectible
by the malware using performance monitoring.

Carborne et al. [5] implements a system called KOP to perform systematic
kernel integrity checking by mapping kernel objects. KOP operates in an offline
manner by capturing Windows kernel memory dumps and using the Windows
debugger to obtain information about the kernel objects. KOPs static analysis
utilizes Vistas source code to identify relevant data types, variables and struc-
tures.

Wang et al. propose HookSafe [6]a solution that creates a shadow copy of non-
movable function pointers, and return addresses mapped to a hardware protected
page aligned area. Requests to modify this shadow copy are intercepted and
forwarded to the hypervisor module that inspects the validity of these requests.
It requires knowledge of OS source code, which is not always available, as in the
case of Windows.

Nick et al.’s State Base Control Flow Integrity (SBCFI) [3] system conducts
periodic kernel control flow integrity checks. To do so, it relies on knowledge of
kernel source code and binary files. As stated before, OS kernel source code for
commodity OSs is usually not readily available.

Baliga et al.’s Gibraltar [4] relies on a separate observer machine to capture
periodic memory snapshots of the target machine for integrity analysis. This idea
is similar in spirit to our approach; however, Gibraltar’s implementation relies on
constantly capturing memory snapshots via Direct Memory Access (DMA). This
poses a significant performance overhead on the observer machine and increases
training time to almost an hour; it also requires additional hardware just for

4

monitoring. Another shortcoming is that Gibraltar requires kernel source code
for the initial static analysis.

In summary, each of the prior efforts surveyed exhibit at least one of the
following limitations: a) reliance on source code; b) execution at the same level of
privilege as the malware; c) significant performance overhead; and d) incomplete
coverage of kernel space. The HookLocator overcomes most of these limitations
and present a viable solution to kernel heap integrity monitoring.

3 Integrity Checking for Function Pointers
3.1 Environment

In a modern virtualized environment, a virtual machine manager (VMM) allows
multiple virtual machines (VMs) to run concurrently on the same physical hard-
ware. The virtual machines are called guest VMs, and are isolated from each
other by the VMM. However, some VMMs also provide virtual machine intro-
spection (VMI) capabilities that allow a privileged VM to monitor the system
resources (such as physical memory) of guest VMs. HookLocator works in such a
virtualized environment, where it runs in a privileged VM and accesses the phys-
ical memory of guest VMs through VMI. We also assume that the kernel code
and the well-known kernel data structures inside the guest VMs are protected by
PatchGuard or an alternate solution, such as VICE [9], System Virginity Verifier
[10], ModChecker [11] and IceSword [12].

The remainder of this section describes HookLocator’s architecture in more
detail.

3.2 HookLocator Architecture

Figure 1 shows the architecture of HookLocator, which consists of four modules:
extraction, search, learning, and pool monitor. The extraction module builds a
list of function pointers from reliable sources in the physical memory of a guest
VM, which is used by the search module to locate candidate function pointers in
the kernel pool data. The learning module uses heuristics to identify the genuine
function pointers, which are then monitored for integrity by the pool monitor.
The details for each module are provided in the following sections.

Extraction Module The extraction module obtains function pointers from
kernel code and well-known data structures residing in the physical memory of
a guest VM and builds a list that is subsequently passed to other modules in
HookLocator. The data structures are well organized and have specific fields
that either contain or lead to function pointers, which are used by the module to
extract the pointers. On the other hand, kernel code does not have such fields.
Thus, extracting function pointers directly from the code requires a different
approach. We employ two different methods to obtain function pointers from
the code, which are described next.

The first method uses a cross-comparison approach and takes advantage of
the relocatable property of Windows kernel code. Note that we cannot directly
use the relocation table associated with kernel components, since the image

5

HookLocator

Privileged VM

Virtual Machine Monitor

Hardware

User
Space

Kernel
Space

Target Guest VM

| | | | | | | | | | | | |

Monitoring-Pointer List (γ)

| | | | | | | | | | | | |

Function-Pointer List (α)

| | | | | | | | | | | | |

Genuine-Pointer List (β)

| | | | | | | | | | | | |

Learning-Pointer List (ɸ)

Extraction
Module

Learning
Module

Search
Module

Pool
Monitor

Virtual Machine
Introspection

Physical
Memory

Fig. 1. HookLocator Architecture. (Arrows directed towards the lists represent write
operations; otherwise, they represent read operations.)

loader often removes this table when the kernel is loaded 1. Instead, we build a
model from the kernel code, which identifies the absolute addresses in the code.

We accomplish this by comparing two snapshots of the kernel code loaded
at two different locations in memory. The differences in the memory contents of
the two loaded kernels are the identified absolute addresses, because the kernel
has been loaded at different locations (the code itself is invariant). Figure 2
illustrates the process. If the addresses lie within the address range of kernel
code, they are potentially kernel function pointers, and are tagged and stored
within the protected VM. In order to extract function pointers from the kernel
code of a target VM, the model is compared with the target VM’s kernel code.
The tags in the model identify the locations of the function pointers in the code,
which are then obtained by the extraction module.

The second approach is a simple pattern matching technique, which comple-
ments the first one in that it does not count on the relocation property of the
kernel. It is specifically designed for 64-bit Windows to overcome the limitation
of the first approach, due to the use of offsets rather than absolute addresses
[8]. We analyzed a collection of kernel functions in the 64-bit Windows 7 kernel
and found a useful pattern: after return instructions (opcode 0xC3), there are a
number of NOP instructions (opcode 0x90) followed by the entry point of the next

1While the .reloc section of the MS Windows kernel does contain the relocation
table, the section is discardable as identified by the characteristic field in the section
header.

6

00000000| bc 44 2b 86 76 44 2b 86 f6 44 2b 86 44 45 2b 86 .D+.vD+..D+.DE+.

00000010| 7c 45 2b 86 f2 43 2b 86 64 44 2b 86 2c 44 2b 86 |E+..C+.dD+.,D+.

00000020| ba 49 2b 86 24 b0 2b 86 bc 43 2b 86 62 48 2b 86 .I+.$.+..C+.bH+.

. . . .

0006c710| 30 01 83 f8 20 77 34 83 c1 04 3b 4d fc 72 eb 89 0... w4...;M.r..

0006c720| 55 10 ff 15 64 20 60 82 64 8b 0d 20 00 00 00 88 U...d `.d.. ...

. . . .

0011b8e0| 4e 8b 30 5b 46 d6 59 41 b8 71 17 c7 11 e7 34 0c N.0[F.YA.q....4.

0011b8f0| 02 00 00 00 6e 74 6b 72 70 61 6d 70 2e 70 64 62 ntkrpamp.pdb

00000000| bc 24 28 86 76 24 28 86 f6 24 28 86 44 25 28 86 .$(.v$(..$(.D%(.

00000010| 7c 25 28 86 f2 23 28 86 64 24 28 86 2c 24 28 86 |%(..#(.d$(.,$(.

00000020| ba 29 28 86 24 90 28 86 bc 23 28 86 62 28 28 86 .)(.$.(..#(.b((.

. . . .

0006c710| 30 01 83 f8 20 77 34 83 c1 04 3b 4d fc 72 eb 89 0... w4...;M.r..

0006c720| 55 10 ff 15 64 00 65 82 64 8b 0d 20 00 00 00 88 U...d.e.d..

. . . .

0011b8e0| 4e 8b 30 5b 46 d6 59 41 b8 71 17 c7 11 e7 34 0c N.0[F.YA.q....4.

0011b8f0| 02 00 00 00 6e 74 6b 72 70 61 6d 70 2e 70 64 62 ntkrpamp.pdb

Fig. 2. Two snapshots of the .text section of the kernel code (ntoskrnl.exe) from 32-bit
Windows 7. The kernel is loaded at the base addresses 00 10 60 82 and 00 f0 64 82.

function. The extraction module uses the 0xC390 pattern to obtain a substantial
list of function pointers.

Search Module The search module performs three primary tasks. First, it
obtains the kernel pool data from the kernel space in the physical memory of a
guest VM; this involves extracting data structures that reference kernel pools in
the memory, and identifying dynamic allocations in the pools.

Second, the search module searches for function pointers in the kernel pool
data. To do this, it uses the function pointer list, built by the extraction module,
and locates function pointers in the pool data.

Third, the search module decides whether to pass the pointer to the learn-
ing module or the pool monitor. This decision is based on the entries in the
genuine pointer list, which contains contextual information about the pointers.
This includes, among others, the name of the module that made the allocation
containing the pointer, the size of the allocation, and the offset of the pointer
from the base address of the allocation. When the search module finds a function
pointer in a pool allocation, it obtains its information and searches for it in the
genuine-pointer list. If it finds it in the list, it adds the pointer to the monitoring-
pointer list so that the pool monitor will check the integrity of the pointer. If the
search module does not find the pointer in the genuine pointer list, it adds it to
the learning-pointer list so that the learning module can appropriately identify
genuine pointers and add them to the genuine-pointer list.

Learning Module A pointer located by the search module may or may not be
genuine, because it can be confused with random data in the kernel pools that
matches a pointer in the function pointer list. When the learning module receives
a pointer via the learning-pointer list, it observes the pointer over its entire life
span. Yin et al. [2] reported that 97% of function pointers in Microsoft Windows
do not change over their entire life span, which provides a basis to identify
genuine pointers. If a pointer in the list does not change until the de-allocation

7

of the memory where the pointer is located, the learning module assumes it is
genuine.

HookLocator does not check the integrity of pointers that change during their
life span. The rationale here is that attractive targets for attack are the pointers
that: a) have a long life span; and b) do not change throughout their life span.
This allows an attacker to create a persistent change in the control flow of the
system. Such pointers may live in the system for long time, which apparently
slows down the learning process, since the module cannot decide whether the
pointer is genuine until its memory is deallocates. Thus, in order to identify such
pointers efficiently, the learning module monitors the age of a candidate pointer
and, if the age exceeds a given threshold, the learning module considers it to be
genuine.

Pool Monitor The sole purpose of the pool monitor is to check the integrity of
function pointers and raise alerts upon any detected modifications. HookLocator
maintains a monitoring-pointer list, which contains the pointers that are mon-
itored by the module. Typically, the pointers being monitored do not change;
however, if a pointer value is changed to another value within the address range
of the kernel-code, or it is changed to NULL or from NULL to a value within
the address range of the kernel code, the module considers the change in pointer
value as legitimate; in all other cases, it raises an alert.

4 Implementation

HookLocator is fully implemented within a privileged VM and does not require
modifications to the underlying VMM or running any components inside a guest
VM. Thus, it works on any VMM (such as Xen, KVM, etc.) that has VMI
support for physical memory analysis. Our current implementation is based on
Xen (version. 4.1.2) on 64-bit Fedora 16 (version. 3.1.0-7). The Windows guests
are Windows 7 SP1.

We use LibVMI [13] to introspect the physical memory of the guest VM to
check the integrity of function pointers. Since LibVMI simply provides access to
the raw physical memory of a guest VM, we need to bridge the semantic gap
between raw memory and useful kernel data structures, which we further discuss
in this section.

The extraction module builds a list of function pointers from kernel code
(including kernel modules) and four tables: interrupt descriptor table, system
service descriptor table, import address table, and export table. To extract in-
formation about function pointers from kernel code and import and export ta-
bles, the extraction module first gathers information about the in-memory ker-
nel modules, including the name of each module, the module’s base address,
and the size of the module. Windows maintains a list of kernel modules in a
doubly linked list. Each node in the list is represented by the data structure
LDR DATA TABLE ENTRY. The base address of the first node in the doubly linked
list is stored in a system global variable PsLoadedModuleList, which is used by
the extraction module to reach the list. Each LDR DATA TABLE ENTRY also has

8

FLINK and BLINK fields that contain pointers to the next and previous node in
the list. The extraction module uses these fields to traverse the complete list of
loaded modules.

For each module in the list, the extraction module uses the base address and
size of the kernel module to extract the whole module from the memory. Each
kernel module is in the portable executable (PE) format, which contains headers,
code and data sections, and import and export tables. The extraction module
parses each kernel module in the PE format to access the tables and the code.
It further processes the code using the cross-comparison and pattern matching
approaches discussed previously to obtain the list of function pointers. Moreover,
the extraction module reads the base address and size of the IDT from the IDTR

register and copies the entire IDT into a local buffer and further processes it
to extract function pointers. It also obtains the system service descriptor table
(SSDT) using the approach from a Volatility plugin [14]. The extraction module
further processes the SSDT to obtain function pointers of system calls.

The search module locates function pointers in the Windows kernel pools by
obtaining the data from each allocation in a pool and scanning it for match-
ing function pointers. The allocations in a pool are classified into two types
based on the allocation size: small chunks, and big allocations. A small chunk
requires less than a page for an allocation. On the other hand, a big allocation
requires more than a page for an allocation. MS Windows keeps track of these
two types of allocations in separate data structures, which are also used by the
search module to track and process kernel pool allocations. The big allocations
are tracked through the PoolBigPageTable, with each entry represented by a
POOL TRACKER BIG PAGES structure. The search module finds the location of the
PoolBigPageTable in the .data section of ntoskrnl.exe. A small chunk, on
the other hand, resides completely within one page and an allocated page can
have several small chunks (represented by POOL HEADER structures), which are
adjacently located in a sequence. The search module finds the allocated pages
and further processes them to extract chunks.

The learning module observes pointers in the learning-pointer list. If a pointer
does not change during its entire life span, i.e., until deallocation of the contain-
ing block, then the learning module considers it a genuine pointer. In order to
discover the current validity of an allocation, the base address of the allocation
can be examined, if the allocation is a big one. If the content of that address is
not 1, it means it is a valid allocation. In case of a small chunk, the learning mod-
ule looks at the 1st bit of the PoolType field in the chunk header POOL HEADER.
If it is set, it means the allocation is valid. There are some cases, e.g., when
a pointer has a long life span, which makes the first criteria less effective for
learning. Thus, the learning module uses a threshold value based on the age of
the pointer. If the age exceeds a certain threshold value, it considers the pointer
as genuine. The learning-pointer list maintains the creation time of a pointer
entry in the list, which the learning module uses to predict the age of a pointer.

The pool monitor observes the pointers from the monitoring pointer list
until the allocation where the pointer is located is de-allocated. In this case,

9

Table 1. Number of function pointers found in the .text code section of kernel and
its modules by HookScout’s IDA plugin (H), our cross-comparison approach (C) and
our pattern matching approach (P).

Windows 7

32-bit 64-bit

Module Name H C H C P

ntoskrnl.exe 5,388 5,390 401 200 2,960
hal.dll 537 537 0 0 537
ntfs.sys 147 147 0 0 416

i8042prt.sys 68 68 0 0 90
http.sys 212 212 0 0 518
disk.sys 11 11 0 0 65

volmgr.sys 18 18 0 0 35
kdcom.dll 21 21 0 0 20

the module stops observing the pointer and also deletes the pointer entry from
the list. If the pointer changes to NULL or to any other value within the address
range of kernel code, the module considers such changes as legitimate and keeps
observing the pointer. Otherwise, it raises an alert.

5 Evaluation

In this section we quantify the performance of each component of HookLoca-
tor. All experiments were performed on fresh installations of Windows 7 in VMs
running on Xen (version. 4.1.2). We also installed several common applications:
Skype, Google Chrome, MS Office 2010, Acrobat Reader, WinDbg, CFF ex-
plorer, and WinHex in order to understand the effects of user processes on kernel
heap data.

5.1 Extraction Module

We use HookScout’s IDA Pro plugin [2] as a baseline for our cross-comparison
approach as both tools rely on the relocation property of Windows kernel. Table
1 summarizes the number of function pointers extracted from the code section
of the Windows kernel by the different approaches.

In the 32-bit case, the two methods are equally effective as they extract
almost exactly the same number of function pointers (the number differs by 2
– and the exact reason for this is under investigation). In 64-bit Windows 7,
HookScout and the cross-comparison approach do not work well, because the
kernel code in 64-bit MS Windows 7 uses offsets to address the entry point of
functions in instructions, instead of absolute addresses. Despite this fact, both
the approaches showed one exception: they both obtained a small number of
pointers from ntoskrnl.exe. HookScout finds 401 pointers (in ntoskrnl.exe)
vs. 200 found by our cross-comparison approach. We further investigated the
exception and it turns out that both methods find the pointers from the SSDT,

10

Table 2. Number of function pointers from different sources in 64-bit Windows 7

Function Pointer Total Number of
Source Name Function Pointers

Kernel Code 28,518
IDT 271

SSDT 401
IAT 12,142

Export Table 4,887

TOTAL 46,219
Unique Pointers 30,875

Table 3. Correlation between the allocation size and the number of function pointers

Allocation Total size of Total number Number of
type allocations (MB) of Pointers pointers per MB

Non paged pool 34.09 0 0
Big allocations

Paged pool 79.13 1665 12

Non paged pool 4.25 3201 753
Small Chunks

Paged pool 172.62 2297 13

however, HookScout analyzes the file, whereas we analyze the in-memory version.
The file ntoskrnl.exe contains 401 absolute addresses for function pointers;
however, when the kernel is loaded into memory, the addresses are adjusted
according to where the kernel is loaded. After the adjustment, a new SSDT
is created, which overrides the original. In the new SSDT, 201 of the 8-byte
absolute pointers are replaced with 401 4-byte offsets from the base address of
SSDT. Thus, half of HookScout’s results are, in fact, false positives.

The byte pattern matching is much more effective and obtains an additional
2,960 pointers and this is the method we used to more accurately identify func-
tion pointers in 64-bit Windows 7. Table 2 shows a breakdown of the number of
function pointers obtained from different sources. Since HookScout only works
on 32-bit Windows, we present only our results for the 64-bit MS Windows 7.
We found that 33.2% of function pointers are duplicates; after excluding them,
we are left with 30,875 distinct function pointers, which are used by the other
modules of HookLocator.

5.2 Search Module

The search module goes through all memory allocations and scans for the func-
tion pointers identified by the extraction module. There are two types of alloca-
tions – small and big – in each of the paged and non-paged kernel pools. We used
HookLocator to understand the number and distribution of pointers in each of
these cases. To obtain them, we ran HookLocator 10 times with a five-second
delay between executions.

11

Table 4. Effects of user process creation on small chunks in the non-paged pool.

Total size of Allocations Total Number of
(in Kilo Bytes) Pointers

Process Before After %age Before After %age
Name Initiation Initiation Increase Initiation Initiation Increase

Skype 4,717.00 4,770.83 1.14 3,456 3,499 1.25
MS Word 4,751.25 4,793.33 0.89 3,491 3,512 0.61

MS Power-Point 4,769.25 4,789.33 0.42 3,503 3,515 0.34
Acrobat Reader 4,767.25 4,840.67 1.54 3,507 3,535 0.79

Windows Media Player 4,820.75 4,928.00 2.22 3,481 3,556 2.16
Chrome 4,789.75 4,863.33 1.54 3,472 3,533 1.76

As shown in Table 3, we obtained the number of function pointers in each
type of allocations and calculated the pointer density in each type of allocation. It
is clear that allocations in the paged pool have a lower concentration of function
pointers (12 per megabyte), which makes them less attractive for attack. More
importantly, these allocations are pageable; if used by an attacker, there is always
a chance that the page containing the modified pointer would be swapped out,
which makes retaining control of the system flow more problematic.

Pages in the non-paged pool always reside in physical memory, so the pointers
in the pool offer a more reliable means to subvert control flow. Our experiment
shows that the big allocations in the non-paged pool have no function pointers,
which leaves small chunks in the pool – with relatively high concentrations of
function pointers – as the most target-rich attack surface. Thus, for the rest of
our discussion, we narrow our focus to the small chunks in the non-paged pool
as the area to be protected.

Table 3 shows that the small chunks in the non-paged pool consist of around
4MB immediately after boot. Our first task is to understand whether there is a
change in small chunk allocations and the number of pointers in the region when
a user process is initiated. We obtained the total size of the small chunks in the
pool before and after a user process is initiated. We ran HookLocator 10 times
with a 5-second pause in between each run. The first four runs were performed
before the initiation of a user process and obtained almost identical allocation
sizes and number of pointers. After the fourth run, we initiated the process
and obtained 6 more readings. The procedure was repeated for six different
applications and their respective averages are given in Table 4.

Across the board, we see an increase of 1-2% in the size of the small chunks
and the total number of function pointers. Therefore, for the rest of our evalua-
tion experiments we consider the system in both idle and active-user state.

5.3 Learning Module and Pool Monitor

The purpose of the learning module is to validate candidate pointers identified by
prior modules and present them as genuine targets for integrity monitoring. The
validation is based on age of the pointer and the observation that only a small

12

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0	
17
2	

34
4	

51
6	

68
8	

86
0	

10
32
	

12
04
	

13
76
	

15
48
	

17
20
	

18
92
	

20
64
	

22
36
	

24
08
	

25
80
	

27
52
	

29
24
	

30
96
	

32
68
	

34
40
	

N
um

be
r	 o

f	 F
un

c-
on

	 P
oi
nt
er
s	

Age	 of	 Func-on	 Pointers	 (in	 Seconds)	

(a) VM is not in use by a user

0

200

400

600

800

1000

1200

1400

1600

1800

0
17

2
34

4
51

6
68

8
86

0
10

32

12
04

13

76

15
48

17

20

18
92

20

64

22
36

24

08

25
80

27

52

29
24

30

96

32
68

34

40

N
um

be
r

of
 F

un
ct

io
n

Po
in

te
rs

Age of Function Pointers (in Seconds)

(b) VM is actively in use by a user

Fig. 3. Life span of function pointers.

number of kernel function pointers change over their life span [2]. Therefore, to
evaluate the false positives – our primary criterion for success – we study the
life span of discovered function pointers and whether they are modified.

We consider two extreme cases: 1) when the machine is idle and there is
no user activity; and 2) when the machine is actively in use. We use PCMark
7 [20] a performance-benchmarking tool to create a reproducible workload on
the target machine, which is representative of user activities. It automatically
performs several computational and IO activities on the system without any user
intervention, including web browsing, image manipulation, video playback, and
antivirus scanning.

We ran HookLocater for one hour to observe the function pointers in the
small chunks of non-paged pool – the results are shown on Figures 3(a/b). In
the idle case, 8% of function pointers end up de-allocated within the first six
minutes, another 0.5% are de-allocated by the end of the hour, and 91.5% are
still valid. None of the de-allocated pointers ever changed their value. In the
active-user case, 69% of pointers live no longer than 20 minutes, another 3% are
de-allocated by end of the experiment, and 28% are still alive. Among pointers
that have completed their life cycle, none changed their values. The interesting
result here is that, it is easier to identify genuine pointers when the system is
actively in use.

Evidently, for a practical system we need a time frame within which to make
a decision whether a pointer is genuine, or not. When a genuine pointer is iden-
tified, it is included in the genuine pointer list, which is then handed over to the
pool monitor for protection. If the assigned pointer is not genuine, it will gen-
erate false alarms and render our system less useful. In other words, we need to
balance two requirements – responsiveness (identify breaches as soon as possible)
and accuracy (have a low false positive rate).

We use a threshold parameter that determines how long we wait before we
declare a pointer genuine. Figure 4 shows the measured false positive rate as a

13

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035

10 40 100 900 1800
Fa

ls
e

Po
si

tiv
e

R
at

e

Thresholds of Pointer Age (in seconds)

Fig. 4. False positive rate.

function of the age threshold of pointers. It is clear that even for a threshold
of 10 seconds the false positive rate is 0.0028, which is a good starting point
for tuning the system. Further investigation into the specific instances of false
positives will, presumably, allow us to lower the rate even further but this study
is outside the scope of this paper.

As a practical test of the effectiveness of the pool monitor we created a
tool that synthetically mutates function pointers in the kernel pools at random.
HookLocator raised an alert in all cases for suspicious changes. In the next
section, we quantify the frequency at which the protection service can be run
and these integrity checks be performed.

5.4 Performance Overhead of HookLocator

We built a small test environment to evaluate the performance of HookLocator.
The physical machine that we used contained an Intel Core 2 Quad CPU (4 ×
2.83GHz) with 4GB RAM. We used a VM running 64-bit Windows 7 over Xen
(4.1.2), allocating one core and 1GB RAM to the VM. The privileged VM had
Fedora 16 installed with the 3.1.0-7.fc16.x86 64 kernel.

We evaluated the HookLocator’s execution performance on different types
of memory allocations (big allocations/small chunks, paged/non-paged pools).
We used two extreme test cases 1) when the target VM idle and 2) when it is
actively in use. Moreover, in both cases, we did not run any extra services on the
privileged VM in order to allow HookLocator exploit all the available resources
of the VM. We obtained the HookLocator’s memory overhead and the speed of
scanning a type of memory allocations.

We ran the HookLocator for a minute and counted the number of scans it
performed. Tables 5 and 6 summarize the results for both the test case, which
show that the HookLocator is able to scan the small chunks of non-paged pool
more than once per second, which makes it suitable for even real-time moni-
toring. HookLocator also has a low memory overhead, compared to the typical
physical memory available on a modern system.

2Megabytes

14

Table 5. Performance evaluation of HookLocator when VM is idle.

Allocation Type Memory Overhead No. of Executions

MB2 %age per minute per second

Big allocations 60 2.38 31 0.52
Small chunks (Paged Pool) 44 1.74 4 0.07

Small chunks (Non-paged pool) 24 0.94 115 1.91

Table 6. Performance evaluation of HookLocator when VM is actively being used.

Allocation Type Memory Overhead No. of Executions

MB2 %age per minute per second

Big allocations 65 2.58 31 0.52
Small chunks (Paged Pool) 47 1.87 4 0.07

Small chunks (Non-paged pool) 24 0.96 101 1.68

6 Conclusion

In this paper, we argued that prior work does not provide reliable and practi-
cal protection against modern rootkits on Windows systems. Specifically, their
shortcomings range from the need to analyze source code and execution in the
same address space, to prohibitive overhead and no protection for the kernel
heap. Also, they all focus on old, 32-bit Windows XP versions, and none is capa-
ble of working with 64-bit versions of Windows 7. To address these challenges, we
developed a new approach based on VM introspection and implemented it in a
tool called HookLocator. The main contributions of our work can be summarized
as follows:

We address the biggest current threat to kernel hooking, which involves tam-
pering with function pointers on the kernel heap. Microsoft’s PatchGuard has
effectively rendered most prior attack research ineffective, but does not protect
the heap. Consequently, the kernel heap is becoming the primary vector for
intercepting kernel control flow by current malware rootkits. Our approach con-
ceptually works on both 32 and 64-bit versions of Windows. It does not rely on
examining the source of the target OS; rather, it uses the relocatable property of
Windows kernels as appropriate, supplemented by pattern matching to reliably
identify kernel function pointers to be protected.

HookLocator works at a higher level of privilege than the potentially com-
promised VM, which makes it very difficult for any rootkit to cover its tracks.
Further, since the tool runs in a separate VM and has a light performance foot-
print, it would be very difficult for a rootkit to detect that it is being monitored.

Our evaluation shows that our approach imposes minimal memory and CPU
overhead, which makes it very practical. In particular, its light footprint enables
real-time monitoring of the target VM, and easy path to scaling up the protection
service.

15

References

1. G. Hoglund, and J. Butler, Rootkits: Subverting the Windows Kernel, Addison-
Wesley Professional, First edition.

2. H. Yin, P. Poosankam, S. Hanna, and D. Song, HookScout: Proactive Binary-Centric
Hook Detection, in Proceedings of the 7th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA10), Bonn, Ger-
many, 2010, pp. 1-20.

3. J. Nick, L. Petroni, and M. Hicks, Automated Detection of Persistent Kernel Con-
trol Flow Attacks, in Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS 2007), Alexandria, VA, USA, 2007, pp. 103-115.

4. A. Baliga, V. Ganapathy, L. Iftode, Automatic Inference and Enforcement of Kernel
Data Structure Invariants, in Pro-ceedings of the 24th Annual Computer Security
Applications Conference (ACSAC 2008), Anaheim, California, USA, 2008, pp. 77-
86.

5. M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, X. Jiang, Mapping Kernel Objects
to Enable Systematic Integrity Checking, in Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security (CCS 2009), Chicago, IL, USA,
2009, pp. 555-565.

6. Z. Wang, X. Jiang, W. Cui, P. Ning, Countering Kernel Rootkits with Lightweight
Hook Protection, in Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS 2009), Chicago, IL, USA, 2009, pp. 545-554.

7. TEMU, http://bitblaze.cs.berkeley.edu/temu.html.
8. M. Russinovich, D. Solomon, Windows Internals: Including Windows Server 2008

and Windows Vista, Fifth Edition, Microsoft Press.
9. J. Butler, G. Hoglund, VICECatch the Hookers!, In Black Hat USA, July

2004, http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/ bh-us-
04-butler.pdf.

10. J. Rutkowska, System Virginity Verifier: Defining the Roadmap for Malware De-
tection on Windows Systems, In Hack In The Box Security Conference, September
2005.

11. I. Ahmed, A. Zoranic, S. Javaid, G. G. Richard III, Mod-Checker: Kernel Module
Integrity Checking in the Cloud Environment, in 4th International Workshop on
Security in Cloud Computing (CloudSec ’12), 2012, pp. 306 313.

12. IceSword, http://www.antirootkit.com/software/IceSword.htm.
13. LibVMI, https://code.google.com/p/vmitools/.
14. SSDT Volatility, https://code.google.com/p/volatility/source/browse/trunk/

volatility/plugins/ssdt.py?r=3158.
15. T. Mandt, Kernel Pool Exploitation on Windows 7,

http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf
16. mxatone and ivanlef0u, Stealth hooking: Another way to subvert the Windows

kernel, http://www.phrack.com/issues.html?issue=65&id=4.
17. K. Kortchinsky, Real World Kernel Pool Exploitation,

http://sebug.net/paper/Meeting-Documents/syscanhk/KernelPool.pdf.
18. R. Riley, X. Jiang, D. Xu, Multi-Aspect Proling of Kernel Rootkit Behavior, In

the proceedings of the 4th ACM European conference on Computer systems (Eu-
roSys09), Nuremberg, Germany, 2009, pp. 47-60.

19. H. Yin, Z. Liang, D. Song, HookFinder: Identifying and understanding malware
hooking behaviors, In Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), February 2008.

20. PCMark 7, http://www.futuremark.com/benchmarks/pcmark7.

16

