
Content triage with similarity digests: The M57 case study

Vassil Roussev*, Candice Quates
Department of Computer Science, University of New Orleans, New Orleans, LA 70148, United States

Keywords:
Similarity digest
Forensic triage
Digital forensics
Case study
M57

a b s t r a c t

In this work we illustrate the use of similarity digests for the purposes of forensic triage.
We use a case that consists of 1.5 TB of raw data, including disk images, network captures,
RAM snapshots, and USB flash media. We demonstrate that by applying similarity digests
in a systematic manner, the scope of examination can be narrowed down within a matter
of minutes to hours. In contrast, conventional manual examination of all the data may
require several days, and its effectiveness relies substantially on the experience of the
investigator.

ª 2012 V. Roussev & C. Quates. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The volume of data subject to forensic examination
keeps growing at an exponential rate as illustrated by data
from the RCFL Program Annual Reports.1 Table 1 shows
a cumulative summary of the amount of data being pro-
cessed by participating RCFLs. The most significant number
is in the last column and shows that the amount of data per
case has grown at an average annual rate of 28% from FY
2003 to FY 2010 (the last year for which data is available).
Cumulatively, the amount of data per case has grown by
466% in seven years.

To deal with the scalability problem, digital forensic
practitioners need to be able to attack the problem from
every direction: automate routine examinations, employ
more resources (both human and machine), and use more
sophisticated processing methods. One of the most prom-
ising approaches to reducing the impact of large cases on
turn-around time is to perform fast and accurate forensic
triage.

We define digital forensic triage as a fast initial screen of
the acquired data whose purpose is to identify the most
relevant artifacts and help build an overall understanding

of the case. In other words, we assume that the evidence
has been acquired and the described work is conducted in
a lab environment. Thus, our starting point is a collection of
evidence containers, such as disk/RAM snapshots and
network traces, and (optionally) some pre-built reference
databases of known content (files). (In principle, it is
feasible to perform similar triage on the spot by bringing in
mobile equipment; however, such discussion is outside the
scope of this presentation.)

We are interested in a solution that has the following
properties:

� Minimizes initial processing; we need answers in
minutes/hours as opposed to days/weeks.

� Allows for fast queries; e.g., query TB-sized data in a few
minutes.

� Utilizes all available hardware; e.g., it should be possible
to concentrate available resources on an urgent case and
get a corresponding speedup.

� Generates reliable hints; we do not expect a triage tool
to replace more precise methods but whatever results it
generates should have a very low false positive rate.

Taken together, these requirements ensure that an
examiner can quickly screen the content of the data, build
an initial understanding of the case, and determine prior-
ities before committing resources to deep examination.
Speed and reliability are critical to minimizing the cost of

* Corresponding author.
E-mail addresses: vassil@cs.uno.edu (V. Roussev), cequates@uno.edu

(C. Quates).
1 http://www.rcfl.gov/DSP_N_annualReport.cfm.

Contents lists available at SciVerse ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate /di in

1742-2876/$ – see front matter ª 2012 V. Roussev & C. Quates. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2012.05.012

Digital Investigation 9 (2012) S60–S68



triage. Before we describe our case study, let us briefly
consider why current generation integrated forensic envi-
ronments, such as FTK and EnCase, are fundamentally
unsuited for triage work.

The standard approach employed by such deep forensic
examination tools is to use a file-centric approach and
access data content via the file system API. This is not
different from what any other application would do with
the notable exception that a forensic tool may attempt to
reconstruct files where the metadata is missing (a.k.a. file
carving). Once a file is retrieved, it is subjected to all
available processing (hashing, indexing) and the results are
stored in a database for future reference.

This approach is systematic and logical; however, it is
also heavyweight and slow. For example, based on the
vendor’s own numbers,2 the full complement of FTK’s
processing shows a long-run throughput of about 10 MB/s
on amodernworkstation. This is completely inadequate for
triage purposes, as it would take days to complete pre-
processing. There are several causes for this low process-
ing rate:

� Data carving and reconstruction. Carving is an inexact
process that can generate large number of false posi-
tives, and often results in significant amount of addi-
tional data for processing.

� Indexing. Indexing is a CPU and I/O intensive process.
Based on in-house testing, the leading open-source
search engine, CLucene, ekes out about 6 MB/s on the
hardware we used for our tests (Section 5).

� Use of a transactional database to store the results from
processing. It has been argued elsewhere (Roussev,
2011a) that the substantial performance penalty (z20
times) for using a transaction-oriented store is not
justified given the reproducible nature of forensic
computing.

� Non-sequential media access. It is well-known that hard
drives perform poorly under workloads exhibiting non-
sequential access patterns; in our tests, as little as 5% of
random reads in the workload can reduce drive
throughput to 50% of its maximum. File-centric pro-
cessing virtually guarantees a non-sequential access
pattern, which reduces throughput and increases
latency. (SSDs do not suffer from this problem but have
capacity and cost constraints that make them expensive
for use on large cases.)

Thus, it is critical for triage tools to avoid the perfor-
mance straightjacket of the prevalent deep examination
methods and adopt alternative approaches to analyzing
data. This means outright rejection of the idea of per-
forming all possible processing and focusing on one or two
lightweight methods. It should be clear that the first three
performance impediments can be eliminated by simply
avoiding the specific processing that causes them (carving,
indexing, database transactions).

This leaves the last problem on the list–achieving high
throughput media access. This can be approached from one
of two complementary directions: a) focus on metadata to
reduce the amount of data examined, or b) access data
content using only a sequential pattern tominimize latency.

Metadata is the additional information that a computer
system must store in order to organize and annotate data
content; e.g., for a file system this includes both user-
readable data per file, such as name, type, and access
time, and system data such as data layout on the physical
medium. Data content is generally laid out as a collection of
either fixed (disk, RAM), or variable sized chunks
(network).

Themetadata approach has twomajor advantages: a) its
volume on a typical target is about 1–5% of the overall
volume so it can be accessed and processed quickly; b)
most metadata is for human use and tends to contain
higher-level logical information. The downside of metadata
analysis is that it may not be complete, or trustworthy. For
example, deallocated objects tend to be reclaimed only
when there is demand for the resources but the metadata
that allows reconstruction is usually gone. Also, users can
manipulate a lot of the metadata directly and could effec-
tively hide their activities (rename files, reset timestamps,
edit OS registry).

Scanning raw data content has the advantage of
working with the actual data content and largely ignores
the metadata. This renders naive hiding techniques inef-
fective and allows all data present on the medium to be
interrogated. The obvious downside is that all data is pro-
cessed and logical information is not used.

Metadata-based triage has been in use for a long time–
to this day, manual file browsing is one of the most
common operations by forensic examiners who use their
experience to steer the investigation in a promising direc-
tion based on observable file system metadata. Timelining
and OS registry Carvey (2012) examination are other
examples of common metadata-centric triage.

Raw-data triage also has a long history, which probably
starts with the use of the strings and grep Unix utilities and
block-level crypto hashes. More recently, bulk_ex-

tractor Garfinkel (2012) has significantly upgraded
regular expression search capabilities of raw data while
Garfinkel et al. (2010) has demonstrated the use of data
sampling to estimate drive content.

The overall goal of this work is to demonstrate the
practical use of similarity digests for content-based triage
on a non-trivial data set. Our contribution is twofold: a) we
use a specific case to quantify the time it takes to answer
realistic queries; and b) we show that the differential
analysis techniques used in this case are simple and effec-
tive, and are readily applicable in the general case.

Table 1
RCFL cumulative case load: FY 2003–2010.

Fiscal year Processed data (TB) Number of cases Avg case (GB)

2003 83 987 84
2004 229 1304 175
2005 457 2977 154
2006 916 3633 252
2007 1288 4634 278
2008 1756 4524 388
2009 2334 6016 388
2010 3086 6564 470

2 http://accessdata.com/distributed-processing.

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68 S61



The rest of the paper is organized as follows: Section 2
provides a brief overview of similarity digests and their
basic properties; Section 3 describes the M57 data set;
Section 4 introduces the generic content queries used to
perform the triage; Section 5describes the various scenarios,
the corresponding triage queries executed, and the observed
performance; Section 6 summarizes our discussion.

2. Background: similarity digests and sdhash

Since 2006, there has been an increasing interest in the
design and use of similarity (or fuzzy) hashes, such as ssdeep
Kornblum (2006) (based on Tridgell (2012)) and sdhash

Roussev (2010), derived from Roussev et al. (2006, 2007).
Unlike cryptographic hashes, which are designed to test for
object identity, similarity schemesseek touncoverobjects that
havenon-trivial similarities in their bit-streamrepresentation.

Specifically, such methods seek to address the following
three scenarios Roussev (2012):

� Identification of embedded/trace evidence. Given a data
object (file, disk block, network packet) we want to be
able to detect (traces of) its presence inside a bigger
object of arbitrary size, such as a disk image, RAM
snapshot, or network capture.

� Identification of artifact versions. Given a large set of
artifacts (files), identify those that are versions of a set of
reference artifacts. The target objects could be execut-
able code (versions of known software), or user-created
data objects (documents).

� Cross-target correlation. Identify and correlate different
representations–on-disk, in-RAM, network flow–of the
same/similar object. This would allow automated
annotation RAM and network captures without the
deep (and costly) parsing and reconstruction that
current approaches require.

In Roussev (2011b), a user study has shown that sdhash
outperforms ssdeep by a wide margin in terms of recall
and precision rates. Subsequent work Roussev (2012) has
lead to a parallelized version, which achieves a significant
performance boost. Based on these prior results, we
decided to evaluate sdhash on an actual case study using
the public M57 data corpus.3

Detailed conceptual description of the inner workings of
sdhash is provided by Roussev (2010) and is beyond the
scope of this presentation. Instead, we provide a minimal
user guide for the tool (version 1.7) and its expected
behavior. All sdhash code and related material is acces-
sible from the tool’s home page: http://sdhash.org/.

2.1. Digest generation

Since version 1.6, building the source code results in two
executables: sdhash and sdhash-dd. The former imple-
ments the original sdhash algorithm and is to be used to
hash files. The latter is a new block-aligned variation

described in Roussev (2012) and is suitable for large targets,
such as drive images. Note that the output of the two
commands would be different for the same target;
however, the two versions are complementary and sdhash

and sdhash-dd signatures are designed to be comparable.
In a typical scenario in which we wish to search a drive
image for a set of reference files, we would apply sdhash-

dd to the drive image and sdhash to the file set and then
would compare each of the file digests to the drive digest.

All command line options described here work exactly
the same way for both sdhash and sdhash-dd, so we will
not duplicate the explanation.

The general format of the command is sdhash

<target-files>. Results are base64-encoded and sent to
standard output one line at a time (every digest is fitted on
exactly one line, with no limit on line length). Example
generation of digests for files sdhash.c and sdbf_api.c

yields the following (output trimmed, line breaks added):
> sdhash sdhash.c sdbf_api.c

sdbf:02:8:sdhash.c:-

sha1:256:5:7ff:160:1:74:iAEAl

AYAIIkgAAAAB...

sdbf:02:10:sdbf_api.c:-

sha1:256:5:7ff:160:2:74:Da CriTh1trgKmU...

The output format is known as SDBF (Similarity Digest
Bloom Filters)with a recommended file extension of .sdbf
for the sdhash version, and .sdbf-dd for the sdhash-dd

version. Every similarity digest is both self-contained (one
line of text) and comparable to any other digest, so the two
versions can be freely mixed within the same file.

The output encodes the following pieces of information,
separated by colons: magic number (sdbf), version (2),
length of file name (8), file name (sdhash.c), hash func-
tion used to hash features (sha1), size of constituent Bloom
filters in bytes (256), number of subhashes per feature (5),
bit mask used to derive the subhashes (0x7ff), number of
features per filter (160), number of filters in the digest (1),
number of features in the last filter (74), and base64-
encoded sequence of filters (AEAlAYAIIkgAAAAB.).

The size of a similarity digest is proportional to the size
of the data targets. The in-memory sdhash representation
is, on average, 2.6% of the size of the target (approximately
256 bytes of digest per 9.5 KB of data). After the base64
encoding, it expands to about 3.6% on disk.

By default, the tool runs a single-threaded version of the
code; however, the -p option can specify a level of thread
concurrency desired. To run the previous examplewith two
threads we would use:

> sdhash -p 2 sdhash.c sdbf_api.c

For maximum performance, the parallelization factor
should match the number of hardware-supported threads
on the platform (we used -p 24 in all of our tests in Section
5). For the sdhash version, the execution is file-parallel,
which means that each file is hashed sequentially but
multiple files can be hashed concurrently. The sdhash-dd

computation is block-parallel–it splits each target into 16KiB
blocks, hashes them inparallel, and concatenates the results.

From a user’s perspective, sdhash-dd generationworks
the same way but produces slightly different looking
digests. For example:

> sdhash-dd sdhash.c sdbf_api.c3 http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario.

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68S62



sdbf-dd:02:8:sdhash.c:-

sha1:256:5:7ff:192:1:16384: 4A:iAEAlAY...

sdbf-dd:02:10:sdbf_api.c:-

sha1:256:5:7ff:192:1: 16384:C0:DaSr...

Themaindifference in thedigest is the inclusionof ablock
size (16384) and the number of features for every filter
(0x4A). The in-memorysdhash-dd representation is 1.6% of
the size of the target (258 bytes per 16,384 bytes of data).

2.2. Digest comparison

Before we describe how to perform digest comparisons,
we should note that there is no difference in the way
sdhash and sdhash-dd perform the comparison–they
run the exact same code.

The result of digest comparison is an integer between
L1 and 100. Despite the range, a positive result is not
interpreted as a percentage of commonality but as a confi-
dence measure. Thus, a result of zero indicates that the two
objects are judged to be uncorrelated, whereas 100 means
the tool is certain that the two objects are correlated; not
necessarily identical.

Put anotherway, comparing two identical objects would
produce a score of 100; however, a score of 100 is not
a definitive indication that the objects are identical. This is
by design so that the score could be used both for
containment and resemblance queries. For example, if we
copied several KB from the beginning of a file and
compared it to the whole, the result would be 100 although
the two objects are not identical. If identity testing is
required, then crypto hashes should be employed as
a separate step.

The do-not-know value of L1 indicates that at least one
of the digests does not contain enough features to make
a trustworthy comparison. This usually happens with small
(<4 KB) and/or sparse files.

The main comparison option is -c and can be invoked
with one or two arguments. The single argument format
(sdhash -c <sdbf-file>) instructs sdhash to load the
digests contained in the given file and compare all possible
pairs. For examples, if the sdbf file contains five files, the
tool will perform 10 comparisons since
sdhashða; bÞ ¼ sdhashðb; aÞ. Here is a simple sequence of
shell commands that would compare two files:

> sdhash sdhash.c sdbf_api.c

> test.sdbf > sdhash -t 0 -c test.sdbf

sdhash.cjsdbf_api.cj000
The output consists of three columns which contain the

names of the two files and the result from the comparison;
the shown field separator is customizable. Note that we
used the -t option, which specifies the minimum
threshold for output. By default, it is set to one, so only pairs
with positive scores will be reported. The -p options works
as before to specify parallel execution.

The two argument comparison format sdhash -c

<sdbf-file1> <sdbf-file2> instructs the tool to
compare every hash from the first file to every hash from
the second one. Thus, if the first file has 10 hashes and the
second one has 20, a total of 200 comparisons would be
performed. In the output, every hash name is prefaced by
the name of the sdbf file:

> sdhash sdhash.c sdbf_api.c > test1.sdbf

> sdhash sdhash.c sdbf_api.c > test2.sdbf

> sdhash -c -t 0 test1.sdbf test2.sdbf

test1.sdbf:sdhash.cjtest2.sdbf:sdhash.cj100

test1.sdbf:sdhash.cjtest2.sdbf:sdbf_api.cj000

test1.sdbf:sdbf_api.cjtest2.sdbf:sdhash.cj000
test1.sdbf:sdbf_api.cjtest2.sdbf:sdbf_api.

cj100
Finally, one option that we frequently used to speed up

our queries in the case study is -s. It allows us to run
comparison operation by using only a sample of the avail-
able digest. Assuming that ref-files.sdbf is a reference
set of sdbf file hashes, and disk.sdbf-dd is the digest for
a disk drive image, wewould use sampling in the following
fashion:

> sdhash -c -s 4 ref-files.sdbf disk.sdbf-dd

In this case, each digest from ref-files.sdbf is loaded
and reduced to no more than four constituent filters, which
we expect to represent about 40 KB of the original file. The
sample is then compared to the full disk.sdbf-dd digest
(no sampling) and the result is calculated as it is normally
done. This technique is very effective if we need a quick test
for the presence of whole known files in larger containers–
disk/RAM images and network traces.

2.3. Interpretation

Based on the discussion in Roussev (2010, 2011b) and
our experience in this work, the results from the sdhash

comparisons are best interpreted along the following scale:

� Strong (range: 21–100). These are reliable results with
very few false positives. When used to evaluate resem-
blance of two comparable in size objects (files) the
number is loosely related to the level of commonality
but this is not a guarantee. When used as part of
a containment query (find a small object inside a bigger
one), the number can vary widely depending on the
particular position of the embedding. In other words the
larger object may contain the small one 100% but the
score may be as small as 25. Roussev (2011b) has
a controlled study that quantifies this behavior.

� Marginal (11–20). The significance of resemblance
comparisons in this range depends substantially on the
underlying data. For many composite file types (PDF, MS
Office) there tends to be some embedded commonality,
which is a function of commonly used applications
leaving their imprint on the file; we have observed this
on occasion even with JPEG files that contain lots of
(Adobe Photoshop) metadata. In that sense, the tool is
not wrong but the discovered correlation is usually not
of interest. Other embedded artifacts, such as fonts, are
also among the discovered commonalities but are rarely
significant. For simpler file types, results in this range
are much more likely to be significant and should be
examined in decreasing order until the false positives
start to dominate.

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68 S63



� Weak (1–10). These are generally weak results and,
typically, most would be false positives. However, when
applied to simple file types, such as text, scores as low as
five could be significant (Roussev, 2011b).

� Negative (0). The correlation between the targets is
comparable to that of two blobs of random data. Special
care needs to be taken when comparing large targets to
each other as discovered commonality could be aver-
aged out to zero. For example, if two 100 GB have 1 GB in
common, the tool will discover that fact but when
averaged with the results from the remaining 99 GB, the
final score will almost certainly be zero, and definitely
not more than one.

� Unknown (�1). This is a rare occurrence for files above
4 KB unless they contain large regions of low-entropy
data. The absolute minimum file size that sdhash will
consider hashing is 512 bytes. If a case requires the
comparison of lots of tiny files, sdhash is likely the
wrong tool.

When comparisons involve block digests, the level of
false positives is somewhat elevated so the threshold of
significance tends to be a little higher. For example, in our
study (sdhash vs. sdhash-dd digests) we completely
ignored results in the 1–10 range.

Finally, comparing the two versions of an object’s digest
yields a strong result but it is almost never 100. In other
words, if s1 ¼ sdhashðxÞ and s2 ¼ sdhashddðxÞ, then
sdhashðs1; s2Þ < 100 in the general case. To illustrate,
consider two files–1M-01.rnd and 1M-02.rnd–that have
nothing in common. Each contains 1 MB of independently
generated pseudo-random data. Then, the following is
a typical result:

> sdhash 1M-01.rnd 1M-02.rnd > 1M.sdbf

> sdhash-dd 1M-01.rnd 1M-02.rnd > 1M.sdbf-dd

> sdhash -c -t 0 1M.sdbf 1M.sdbf-dd

1M.sdbf:1M-01.rndj1M.sdbf-dd:1M-01.rndj049
1M.sdbf:1M-01.rndj1M.sdbf-dd:1M-02.rndj000
1M.sdbf:1M-02.rndj1M.sdbf-dd:1M-01.rndj000
1M.sdbf:1M-02.rndj1M.sdbf-dd:1M-02.rndj050
Since in theworld of similarity weworkwith ranges, the

above behavior is not a problem as long as the sdhash vs.
sdhash-dd comparisons yield strong correlations. They do.

3. The M57 data set

The classic problem in discussing digital forensic cases is
the fact that actual cases have obvious privacy constraints,
whereas most publicly available data sets are very limited
in scope. The only exception to the latter is the M57 Patents
scenario created by the Naval Postgraduate School. It
features the fictitious m57.biz patents research company,
whose employees’ actions are scripted, performed, and
recorded on a private network. Thus, the data set consti-
tutes a realistic exercise yet it carries no restrictions and
provides the best available public platform for peer-
reviewed research.

The 2009-M57-Patents scenario encompasses a 17-day
period between November 16th, 2009 and December 11,
2009 (excluding weekends and holidays). The company has

four employees–Pat (CEO), Terry (IT administrator), Jo
(patent researcher) and Charlie (patent researcher)–who
are engaged in a variety of legal and illegal activities. For
the purposes of the scenario, employees interact with
several other personas created outside of them57 company
to mimic real world interactions. These represent friends,
acquaintances, clients, and other individuals in contact
with the m57 employees.

The overall amount of data is 1.5 TB in raw form (460 GB
compressed) and consists of the following data.

3.1. Disk images

Each persona’s workstation hard drive was imaged
daily,4 except for weekends and holidays, using the aimage
tool provided in the AFF libraryhttp://afflib.org. Addi-
tionally, at the end of the scenario the hard drives are
imaged again. All of the hard disk images use the NTFS file
system. There are 78 disk images in the set varying in size
between 10 and 40 GB (raw) for a total of 1,423 GB of data.

3.2. RAM snapshots

Similar to the disk images, the RAM contents of each
workstation are captured daily,5 except for weekends and
holidays. All four machines run different versions of MS
Windows with the individual machines having the
following amounts of RAM–Charlie: 1 GB (XP), Terry: 2 GB
(Vista), Jo: 512MB (XP), Pat: 256MB (XP). There are 84 RAM
snapshots in the set with a total size of 107 GB.

3.3. Network traffic

Network data consist of 49 packet captures6 using the
gateway’s interface for a total of 4.6 GB of raw data. Data
covers every day the scenario was in operation, including
weekends and any holidays that occurred during the
scenario.

3.4. Device images

Images of the four USB devices used during the period
are imaged at the end of the scenario (4.1 GB total).

3.5. Kitty material

There is an additional reference set of known “kitty
porn” material, which simulates contraband. The set
consists of 125 JPG images (43 of which are lower resolu-
tion versions of the originals) and six movies. Total amount
of the set: 224 MB.

4. Content-centric triage

Recall that similarity digests are designed to solve two
content correlation problems–resemblance and

4 https://domex.nps.edu/corp/scenarios/2009-m57/drives/.
5 https://domex.nps.edu/corp/scenarios/2009-m57/ram/.
6 https://domex.nps.edu/corp/scenarios/2009-m57/net/.

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68S64



containment. That is, we can use sdhash to determine if
two objects of comparable size resemble each other, or if
(pieces of) a smaller object are contained inside a bigger
one. In the former scenario, we would most commonly
compare one file to another file, or relatively small volume
images, such as portable flash drives. While there is no
explicit limitation that prevents us from comparing, for
example, two hard drives the information gleaned would
be rather minimal (e.g., two MS Windows drives are
similar) and not worth the relatively long computation. In
the latter scenario, we would search for relatively small
artifacts–blocks, files, network packets–inside bigger
targets, such as disk images. We should emphasize that the
distinction is conceptual and is helpful in formulating
useful queries and correctly interpreting the results;
however, the tool is invoked the same way and works the
same way in both cases.

For these triage cases, we use four types of queries we
consider representative of the style of inquiry in the general
case:

� File vs. HDD. The purpose of this query is to establish
whether (pieces of) a particular file can be found on
a drive image. The drive would typically be hashed with
sdhash-dd. The query will cover the entire image and
can find deleted, or partially overwritten files. If the file
is present in its entirety, the sampling feature of sdhash
can be used, which allows us to query for a small part of
the file, thereby speeding up the search process. If
sampled queries do not yield results, we can fall back to
a complete query.

� File vs. RAM. The purpose of this query is to establish
whether traces of a particular file can be found in a RAM
snapshot. The RAM image would typically be hashed
with sdhash-dd, using the page size as the block size
(4KiB). Typically, we would search for all executables
from a HDD image to establish what programs have run.
Alternatively, we can search for data files as they tend to
persist in the file cache until space is needed.

� File vs. pcap. The purpose of this query is to establish
whether traces of a particular file can be found in
a network capture. This is somewhat less reliable as a lot
of network traffic gets automatically transformed
(base64, zip) and would require pre-processing to gain
the maximum information. Nevertheless, our case study
shows that, in seconds, we can still identify useful data
even without any pre-processing, or flow
reconstruction.

5. The M57 scenarios

The main goals of our triage process are to quickly build
an overall picture of the case, narrow down the focus of the
inquiry, and provide strong hints as to what the final
outcome of the inquiry might be. We fully expect that
precision methods involving deep inspection will be
a follow-up step to unambiguously establish the relevant
facts. In this case study, we have the unique benefit of
knowing the ground truth by having the complete
sequence of user actions.

The overall process is very simple–we generate the
similarity digests for all targets and all queries (files of
interest) and then systematically apply the queries to the
targets. Since this is a triage process, we place a particular
emphasis on the speed with which we can get actionable
results, as well as their accuracy.

All tests were run on one of two similarly configured
systems. The slightly faster system is a server with two six-
core Intel Xeon CPUs @2.93 GHz with hyper-threading, for
a total of 24 hardware threads. The host is equipped with
72GiB of RAM @800 MHz and has hardware-supported
RAID 10 with benchmarked sequential throughput of
260 MB/s. All presented numbers are stable averages over
multiple runs (unless otherwise noted).

5.1. Pre-processing: sdhash generation

The first step is to generate the similarity digests of the
targets. For all disk images, we use the block-aligned
version of the digests (sdhash-dd), which splits the
target into 16KiB blocks, generates a digest for each block,
and concatenates them. The main advantage of this
approach (versus mounting the image and hashing indi-
vidual files) is speed: block hashing is parallelized and disk
access remains sequential. In Roussev (2012) it is shown
that a 24-threaded machine similar to the one we use can
achieve throughput of 370 MB/s on cached data, which
makes the hashing process I/O-bound onmost systems. The
other advantage is that we do not depend on our ability to
process the file system layout and do not need to perform
carving to retrieve deleted data.

For the RAM images, we used the sdhash-dd version of
the algorithm, except we set the block size to 4KiB. The
rationale here is obvious–the virtual memory system uses
4KiB as the default page size.

For the USB drives we generated sdhash-dd digests for
each image. For specific queries, we also hashed all files
extracted from the mounted image.

The kitty material files were hashed with the base
sdhash algorithm, which is suitable for individual files.

Table 2 provides a summary of the observed digest
generation performance for each of the sets–hard disk
images, RAM snapshots, network captures, USB drives, and
reference file set–providing the cumulative size, the execu-
tion time, and the throughput rate. The main point here is
that the performance is I/O-bound, so the digest generation
can proceed in parallel with the acquisition process. In
practice, this can be achieved by utilizing an imaging tool
like dcfldd (http://dcfldd.sf.net/), which can provide two
parallel streams–one for creating a forensic image and one

Table 2
Summary: sdhash generation performance.

Data Set Size (GB) Time (min) Rate (MB/s)

HDD 1423.0 168.00 143
RAM 107.0 10.70 166
Network 4.6 0.40 196
USB drives 4.1 0.45 155
Kitty 0.2 0.08 45
Total 1538.9 179.63 143

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68 S65



for the hash generation. Thus, with proper planning and
sufficient hardware, we can get the similarity digests of the
target at no extra latency and can begin querying them
immediately after the end of the cloning process.

In comparison, current state-of-the-practice forensic
tools would be just starting their pre-processing. If we
assume (optimistically) that each of the 78 HDDs could be
processed (on average) in 10 min and each of the 84 RAM
snapshots in 5min, we end upwith a total estimate of about
20 h. That is, we have to wait that long before we can start
work–clearly, this does not work in the context of triage.

5.2. Case #1: contraband

From the detective reports in the scenario, there is
reason to suspect that one of M57’s computers (Jo’s) has
been used in the contraband of “kitty porn”. The suspicion
arose when Jo’s old computer was replaced on Nov 20 and
subsequently sold online. We also know that Jo might have
tried to cover his tracks when police seize the computers on
the last day of the scenario.

The following are several relevant questions that can
help us get an overall picture of the case:

� Were any M57 computers used in contraband?
� If so, when did the incident happen?
� Is there evidence of intent?
� How was the content distributed?
� Was any of the content sent outside the company

network?

To answer the above questions we start by querying all
of Jo’s disk images with the kitty set. Since the full sdhash

comparison compares every digest component of the query
files to every digest component of the target, it would take
55 min to run through 21 disk images (260 GB of raw data).
However, we could do a much faster scan by sampling the
query digests, effectively looking only for pieces of the
original files.

For example, if we use a sample of four consecutive
filters (digest components) we would be searching for
traces of about 40 KB, on average, of the query file in the
target. Such a sampling query (using the -s option of
sdhash) needs only 123 s to complete. We can be even
more aggressive and use a sample size of two, which in this
case yields the same results, at the cost of only 96 s for all of
Jo’s hard disk images.

Fig.1 provides a histogram of the number of file matches
for each of the dates and provides an excellent basis for
forming an initial hypothesis (sdhash is run with
a threshold score of 10). It appears that 124 files of the kitty
set were copied onto Jo’s computer on 11/18, with fivemore
added on 11/20. When Jo’s computer is replaced, all kitty
material disappears until 11/24 when 130 files are again
placed onto the new machine. Starting on 12/03, the
number of files starts dropping gradually, which could be
explained by the files being deleted by the user and then
being gradually overwritten by the system. (In reality, Jo
copies the files into a TrueCrypt volume and deletes them.)
On the last day,12/11, we see that kitty files reappear, which
turns out to be function of the user trying to cover up his
tracks. Querying all the 78 disk images for traces of
contraband (including Jo’s) using a sample size of two takes
7 m 58 s, whereas the same query with a sample of four
takes 11 m 10 s. (The complete query for all disks would
take 5 h 10 m and would be more appropriate as part of

Fig. 1. Frequency of contraband files on Jo’s computer.

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68S66



a deeper investigation.) The results do not reveal any new
matches on any of the other machines. Similarly, a query of
the network traces (1 m 58 s) does not show any hits. From
the scenario script we know that, indeed, the kitty files
were never placed on any of the other machines and were
never transferred over the network. A review of Jo’s USB
drive finds the source kitty images in seconds.

In summary, in approximately 20 min, we were able to
reach the following preliminary conclusions: a) yes, the
initial suspicion of contraband is correct; b) only Jo’s
computer is involved; c) the images were likely introduced
on Nov 18; d) the USB drive is the apparent mode of
transmission; and e) there is every reason to believe that
somebody (most likely Jo) has deliberately placed kitty
material on his computer.

We also performed an examination of Jo’s RAM images
in the following fashion: for each daywemounted the HDD
image, hashed all executable files and used them to query
the RAM snapshot of the same day (18 m 06 s). We found
strong indication of Jo downloading, installing and using
TrueCrypt. The timeline below shows the relevant matches
and the corresponding score.

12/03

.../Downloads/TrueCrypt Setup 6.3a.exe 092

.../TrueCrypt Format.exe 090

.../TrueCrypt Setup.exe 092

.../TrueCrypt.exe 092

12/04

.../Downloads/TrueCrypt Setup 6.3a.exe 063

.../TrueCrypt Setup.exe 063

12/09

.../Downloads/TrueCrypt Setup 6.3a.exe 084

.../TrueCrypt Format.exe 079

.../TrueCrypt Setup.exe 084

.../TrueCrypt.exe 090

12/10

.../TrueCrypt.exe 092

12/11 - pre-raid

.../TrueCrypt Format.exe 086

.../TrueCrypt.exe 079

All of these match the actual sequence of events as
described in the M57 script. In summary, we were able
examine and correlate all the 21 disk and 18 RAM images to
piece together the essential outline of the case, and we
used almost no case-specific knowledge. Total triage time:
40 min.

5.3. Case #2: eavesdropping

In the eavesdropping scenario, it is suspected that
somebody is spying on the CEO (Pat) electronically. Our
starting hypothesis is that a rogue process was introduced
on his computer. Since we lack more specific information
with respect to timing, we will examine all of Pat’s RAM
snapshots, and attempt to establish which executables are
in memory.

For this case we generated some additional file hashes–
we mounted each of Pat’s disk images and hashed all
individual files; this took 1 h 30 m for 18 images (260 GB).

For each day, we compared the memory images from
Pat’s computer against the sdbf hashes of the .exe and .dll

files on the disk images from his computer to establish
what codewas run on themachine. To obtain a baseline, we
also compared all the memory images against the execut-
able files from the starting disk image, which we know is
clean. The resulting difference gives us the set of execut-
ables that are not present in the base image but were run
on Pat’s computer.

Using a sampling size of four filters, it took 8 m 49 s to
compare the base image executables to all 21 RAM snap-
shots, and 10 m 30 s to compare the executables from the
same-day disk image to the corresponding RAM snapshots.
(For reference, running the complete version of the latter
with no sampling was measured at 2 h.)

Based on the difference results and a few lines of light
scripting wewere able to produce the following timeline of
potentially relevant processes, as well as some routine
activities that can be easily discerned. For each day, we also
give the size of the difference (number of files to be
examined), which naturally grows over time. For brevity,
weekends and dateswith no interesting results are skipped.

11/16, [71] not in baseline

Present: Java, Firefox, python, mdd_1.3.exe.

11/19, [95] not in baseline

Acrobat Reader 9 installed or updated,

including Adobe Air.

Other programs from 11/16 still present.

11/20, [289]

Looks like Windows Update has run with many new

dlls in the _restore and SoftwareDistribution

folders.

11/23, [561]

Windows Update was run (again)

11/30, [274]

Likely a Brother printer driver installed.

Acrobat/Firefox still present.

12/03, [649]

AVG has been updated.

XP Advanced Keylogger appears: XP Advanced/

DLLs/ToolKeyloggerDLL.dll 087

XP Advanced/SkinMagic.dll 027

XP Advanced/ToolKeylogger.exe 024

12/07, [460]

More Brother printer related files.

InstallShield leftovers present. win32dd

present.

XP Advanced Keylogger is no longer here.

RealVNC VNC4 has been installed and is

present:

RealVNC/VNC4/logmessages.dll 068

RealVNC/VNC4/winvnc4.exe 046

RealVNC/VNC4/wm_hooks.dll 023

12/10, [1240] AVG updated. IE8 and Windows

updated.

VNC still present.

12/11, [634] VNC present.

At this point it certainly appears that a keylogger was
installed on Pat’s machine on 12/03 and was removed on
12/07. If Pat did not install RealVNC on 12/07, it could also
have been used to look over his shoulder.

Total triage time: 30 min for queries (plus 1 h 30 m for
additional file hashing).

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68 S67



5.4. Case #3: corporate espionage and extortion

There is suspicion that somebody has leaked company
secrets. We turn our attention to Charlie’s computer and
compare the executables from the disk image with the
corresponding RAM snapshot of the day. Using a sample
size of four, we complete the comparison of all 18 RAM
images in 31 m 02 s.

We identified the presence of the “Cygnus FREE
EDITION” hex editor on 11/24, 11/30, 12/02, 12/03, and 12/
10; further, we found a program called “Invisible Secrets
2.1” on 11/19, 11/20, 11/24, 11/30, and 12/02. It has dlls
named “blowfish”, “jpgcarrier”, and “bmpcarrier,” which
supports the suspicion that it is a steganography tool. On
Charlie’s USB drive we find a program “insecr2.exe,” which
we can find in the network trace for 11/19 suggesting it was
downloaded on that day.

Our next step is to identify what data might have been
exfiltrated. We searched the USB drive for documents
(everything but executables) and find the following inter-
esting collection of files:

/microscope.jpg

/microscope1.jpg

/astronaut.jpg

/astronaut1.jpg

/Email/Charlie_..._Sent_astronaut1.jpg

/Email/other/

Charlie_..._Sent_microscope1.jpg

Upon examination, the “microscope” and “astronaut”
pairs of images appear identical, yet their hashes are
different suggesting that they might have been used as
carriers for stego images. Examination of accompanying
emails confirms the hypothesis.

In looking for other possible exfiltration carriers, we
find that 7-zip is present and was installed on 11/24. On
the USB drive we find a password-protected archive
01.zip, which apparently contains two files–
us005026637-001.tif and us006982168-001.tif. By searching
for all files from the USB drive in all Charlie RAM images
(54 s with sample size of four) we find the two files in
memory on 11/24, 11/30, and 12/02. Correlating the zip file
with mail traffic reveals that it is part of an extortion
scheme, rather than exfiltration.

Total triage time: 40 min.

6. Conclusions

In this work, we used a sizeable case study to demon-
strate the utility of similarity digests as a triage tool. In
particular, we showed that a single and simple data
correlation tool– sdhash–can provide a systematic and
efficient path to triage with minimal assumptions and
knowledge of the case. (Indeed, we omitted additional
specific information available in the form of emails, which
make the cases substantially easier to solve.) Our experi-
ence supports the following conclusions:

� Similarity digests offer broad data correlation capabil-
ities that allow an investigator to reliably link data and
code artifacts across different types of evidence sources,
such as disk images, RAM snapshots, and network traces.

� The current sdhash implementation offers digest
generation rates that allow the hashing to be performed
in parallel with disk target acquisition; this enables
immediate triage queries on the target. We expect this
approach to be pushed further by enabling queries for
known content to be performed while the acquisition is
running.

� We have found the correlation queries offered by
sdhash very effective and time efficient approach for
building an initial framework of understanding for
the cases studied. While this does not eliminate the
need for follow-up deep analysis to confirm the
preliminary conclusions, it can give a significant head
start to the investigation by pointing it in the right
direction.

� The overall approach of using digests is very simple and
scalable, which allows for it to be applied in a systematic
and automated fashion to all cases; further, the results
are intuitive and easy to interpret, which implies that it
can be quickly adopted into practice.

We emphasize that while the style of content-based
triage supported by sdhash is unique, it is also comple-
mentary to other triage techniques, especially metadata
ones. We believe that we are seeing the beginning of a new
approach toward large-scale investigations, which relies
heavily on a combination of fast, lightweight triage
methods applied aggressively from the moment evidence
acquisition starts. In the fullness of time, we expect deep
analysis, as currently practiced, to be applied ever more
selectively as its performance costs are becoming
unbearable.

References

Carvey H. Windows forensic analysis toolkit. 3rd ed.;, ISBN 978-
1597497275; 2012.

Garfinkel S, Nelson A, White D, Roussev V. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. In:
Proceedings of the tenth annual DFRWS conference (DFRWS’10).
Portland, OR; Aug 2010.

Garfinkel S. Digital media triage with bulk data analysis and bulk
extractor. Working paper, http://simson.net/ref/2011/bulk_extractor.
pdf [accessed: 20.02.12].

Kornblum J. Identifying almost identical files using context triggered
piecewise hashing. In: Proceedings of the 6th annual DFRWS. Lafay-
ette, IN; Aug 2006.

Roussev V, Chen Y, Bourg T, Richard GG III. md5bloom: Forensic fil-
esystem hashing revisited. In: Proceedings of the 6th annual DFRWS
conference (DFRWS’06). West Lafayette, IN; Aug 2006.

Roussev V, Richard GG III, Marziale L. Multi-resolution similarity hashing.
In: Proceedings of the 7th annual DFRWS conference (DFRWS’07),
Pittsburgh, PA; Aug 2007, doi:10.1016/j.diin.2007.06.011.

Roussev V. Data fingerprinting with similarity digests. In: Chow K,
Shenoi S, editors. Research advances in digital forensics, vol. VI.
Springer, ISBN 978-3-642-15505-5; 2010. p. 207–26.

Roussev V. Building open and scalable digital forensic tools. In: Sixth
international workshop on Systematic Approaches to Digital Forensic
Engineering (IEEE/SADFE 11), May 2011a, Oakland, CA.

Roussev V. An evaluation of forensics similarity hashes. In: Proceedings of
the eleventh annual DFRWS Conference. New Orleans, LA; Aug 2011b.
p. 34–41.

Roussev V. Scalable data correlation. In: Eighth annual IFIP WG
11.9 international conference on digital forensics. http://
roussev.net/sdhash/parallel-sdhash-IFIP-12.pdf [accessed 20.
02.12].

Tridgell A. Spamsum README, http://samba.org/ftp/unpacked/junkcode/
spamsum/README [accessed 20.02.12].

V. Roussev, C. Quates / Digital Investigation 9 (2012) S60–S68S68


