
Building Open and Scalable Digital Forensic Tools
Vassil Roussev

Department of Computer Science
University of New Orleans
New Orleans, LA 70148
Email: vassil@cs.uno.edu

Abstract—We define a digital forensic investigative process as
scalable if it can keep the average time per investigation constant
in the face of growing target sizes and diversity. In technical
terms, we consider scalability in terms of speed, cost, extensibility,
and user interface abstractions. We argue that both commercial
and open source products are showing a growing disconnect with
actual scalability needs of digital forensic practice.

In our view, the current technical approaches need to be
rethought from the ground up. We put forward the idea that a
new generation of technologies developed for the Internet should
be adapted as the architectural basis for developing the new
generation of open and scalable forensic tools.

I. INTRODUCTION

The starting point for our discussion is based on three simple
trend observations:

• The size and complexity of forensic targets will continue
to grow for the foreseable future. Hard drives have
recently reached the 3TB mark with realistic medium-
term prospects of 14TB by 2018. ”In FY09, the RCFL
Program nearly doubled the number of TBs processed
compared with only two years ago.” [13]

• Human resources charged with the problem will not grow
appreciably. Relative to the growth of the data, the growth
in the number of analysts will be negligible as it is yet
another cost to be born to maintain societal law and order.

• There are real-world deadlines on most forensic analyses.
Practicing forensic analysts are acutely aware of this fact.
In a criminal case, there might be the luxury of having
more time to investigate the case; in civil/internal cases,
there a limits on the time and resources clients will spend.

In summary, much more analytical work will need to be
done in the same amount of time and with the same number of
investigators; clearly, technology will have to do havier lifting
and scale appropriately to meet the challenge. Scalability is
generally defined either as the ability of a system to efficiently
utilize more resources to meet growing demand. Thus, if we
had a truly scalable system, we expect to handle a doubling of
demand by doubling the available hardware resources, which
would double the speed at which data is processed. We refer
this as data scalability; we know how to build such IT systems,
but that, in our view, is only part of the solution needed.

Cost scalability is just as important a consideration for most
users. We define it as being able to keep up with demand
by investing a fixed and predictable amount of money every
year. Moore’s Law dictates that, by the time demand doubles,

the cost per unit of storage/computation would be cut in half,
allowing for twice the resources to be purchased on a fixed
budget. It is, therefore, important for the cost of the software
component of the infrastructure to remain relatively flat.

Another aspect of the problem is that our system needs to be
able to scale across a variety of platforms and artifacts. That
is, we need an extensible mechanism by which we can add
analytical support on demand by transparently incorporating
new specialized modules into the investigative environment.

Finally, there is the problem of presenting to the analyst the
increased volume of output from the automated parsing and
analysis.

II. REVIEW: CURRENT STATE OF THE PRACTICE

A. Data Scalability

Among commercial vendors, only one product, FTK (by
AccessData), makes an explicit effort to address the issue by
deploying distributed resources.

What can FTK do for you? Let us consider the vendor’s
own testing results [6]. There are two relevant tests. The first
one consists of four images, 75-160GB in size, that have been
fully processed (”including indexing, carving, metacarving and
hashing”) by the tool using four machines. The results are
reproduced in Table 1.

TABLE I
FTK DISTRIBUTED PROCESSING PERFORMANCE

Image Items Image Size Time: 1 node Time: 4 nodes

#1 836,614 100GB 9.08 hrs 2.13 hrs

#2 878,276 160GB 8.57 hrs 1.68 hrs

#3 1,125,742 140GB 13.48 hrs 5.63 hrs

#4 1,177,416 75GB 6.96 hrs 2.75 hrs

Total 4,018,048 475GB 38.09 hrs 12.19 hrs

If we average out the results we can conclude that the
average processing rate is about 11MB/s. The second result
concerns a larger set, which is quoted as 1.28TB in compressed
data, 62.65 million items; full processing took ”6 days and 5
hours. Assuming that the 1.28TB would expand to 3TB of
raw data, we can derive an average processing rate of about
6.5MB/s. In summary, we conclude that current generation
commercial tools can perform their processing at an average
rate of about 10MB/s, presumably on four machines.



How good is 10MB/s? A 3TB drive of the popular WD
Caviar Green[19] brand, would take a minimum of 7:30
hours to read from end to end. Thus, the processing time
tproc is 11 times the minimum time possible, tmin. Relative
to the available high-capacity SSD drives, where sustained
throughput is around 600MB/s [12], tproc = 60× tmin.

The notion that digital forensics has a scalability problem
and that only a distributed solution can take on this challenge
has been put forward as early 2004 [15] and further expanded
in [14]. Unfortunately, there are no robust and practical open-
source tools that implement such ideas, although some proof-
of-concept prototypes in MapReduce processing [16] and
utilizing GPUs [11] have demonstrated that there is plenty
of performance to be gained.

Nonetheless, actual integrated open-source environments,
such as Sleuthkit1/ Autopsy, PyFLAG2, OCFA3, and DFF4,
that could be viewed as a (partial) alternative to a commercial
tool plainly do not address data scalability. Of these, only
PyFLAG due to the use of MySQL as a backend store and
has any potential to address the issue in a limited way.

B. Cost

Commercial tools have a relatively high acquisition costs
owing to a couple of main factors:

• Digital forensics is a niche field that can support only
a couple of main products. Once the dominant players
are established (as it it the case), there is little room for
profitable competition to emerge.

• Currently, the main commercial products are exercises
in software integration–many of the components are
licenced from other companies and put together with
a common GUI. For example, FTK utilizes an Oracle
database, indexing technology from dtSearch, and numer-
ous rendering components for various file types. All of
the licencing costs are folded into the final price.

In terms of cost, it is difficult to scale commercial products
efficiently since they include per seat charges (major compo-
nents like Oracle and dtSearch also have per node charges in
their standalone pricing). Thus, if a lab has to double its CPU
capacity every two years just to keep up, it also has to pay up
for the (same) software.

Free tools have zero upfront costs but present potentially
higher ownership costs; since they are incomplete, they require
custom component writing and integration to fill in the gaps.
This presents at least two problems: a) the customer must
have in-house software development expertise, and b) must
be willing invest in the solution. Scaling up the solution only
exacerbates this cost problems as the average developer is not
particularly adept at building distributed software.

1http://sleuthkit.org/
2http://pyflag.net
3http://ocfa.sourceforge.net/
4http://www.digital-forensic.org/

C. Extensibility

In our view, no commercial tool supports true extensibility–
the ability to add and integrate into the environment com-
pletely new functionality; in other words, the product is not
available as a platform. Of the popular tools, EnCase has
the best functionality in that it allows users to write scripts,
primarily to create filters and automate operations. While
this is certainly useful, it does not allow the addition, for
example, of an image processing module that can support
new devices, file systems, custom image processing, etc. This
makes perfect economic sense to the vendors and we fully
expect the platforms to remain closed. Based on examples
from other software industries, one thing that could change
this if a serious open platform were to emerge.

By definition, open source tools have unlimited flexibility in
that any new code could be added and mixed in with existing
code. The problem is that there is not enough structure to
make the integration of new functions with the platform easy.
Efforts at defining component interfaces can be placed in two
categories: data-centric and API-centric.

The data-centric approach to integration seeks to define
common data formats that can be used for I/O and, by exten-
sion, to create Unix-style chaining of command-line tools. In
virtually all cases plaintext (the lowest common denominator)
is the format of choice. The problem is that building a robust
system out of disparate components unified only by loosely
(and informally) defined interface based on lines of text is not
a practical proposition. Further, converting to/from text can be
costly and space-inefficient, further decreasing the efficiency
of the system.

The API-centric approach, e.g. OCFA, follows the standard
software engineering practice of defining a programming in-
terface to access a set of already implemented services. This
is a time-tested approach works great for open-source projects
if the underlying infrastructure provides a critical minimum of
services to developers. If the infrastructure provides 80%+ of
what developers need, then it usually makes sense to utilize it.
Over time, developers can become interested in contributing
to the code base, thereby making it more attractive for other
developers. On the other hand, if the infrastructure does not
provide a good starting point, it turns into yet another skeleton
framework that is forgotten.

D. User Interface

One aspect of scale problem in the forensic process that has
received little attention is the the need for new approaches to
visually presenting and a analyzing large amounts of data.
Current generation of integrated tools universaly use a few
basic GUI components to present informations. Figure 1 shows
a typical example of what the GUI of an integrated environ-
ment looks like. It utilizes three main components–trees to
navigate (and filter based on) hierarchical structures; tables
to allow for sorting and filtering based on artifact attributes
(name, timestamps, etc.) and content (keywords); and a viewer
component that can render various types of artifacts, such as
text, html, and images.



Fig. 1. EnCase Forensic main screen

Our view is that this style of presenting data is quite inade-
quate and is particularly limited in its ability to deal with larger
amounts of data. As more data is extracted from the source, the
investigator gets bombarded with more data and has to spend
increasing efforts to define ever more complicated queries
that reduce the result set to a manageable size. The ”search-
and-filter” approach simply does not scale as it transfers the
data load onto the human, whose data processing capacity is
certainly not doubling every two years.

The eDiscovery space can provide some relevant examples
of visual analytic techniques that can be helpful. For example,
Intella5 uses a visual clustering interface to provide both a
high-level clustered overview of email relationships and a
details on how these are derived. The important aspect of
this style of visualization is that it allows for both the big
picture and the outliers to be readily observed. We view such
capabilities as critical to managing large data sets.

III. ANALYSIS: LEARNING FROM THE WEB

As already mentioned, digital forensics is a relatively small
area for both research and software development efforts.
This has lead to a somewhat insular culture which considers
forensic problems to be unique. There is some truth to this–
e.g., few people outside of forensics are interested in extracting
JPEG fragments and reconstructing them. That, however, is no
more than 20% of the problem. Once the data of interest is
retrieved and parsed, we ought to leverage existing technology
for the remaining 80%.

We are convinced that modern Web technologies are an
excellent a starting point. For the rest of this section, we
present a brief analysis of how Web technologies have adapted
to very similar challenges to the ones we discussed earlier.

A. Data Scalability

Over the last several years, the new wave of traditional and
social networking Web applications has resulted in a growing
ecosystem of data management solutions that have shattered
the orthodoxy of using the same hammer–transactional rela-
tional database management systems (RDBMS)–for every job.
Even Michael Stonebraker, one of the pioneers of relational

5http://www.vound-software.com/

databases, has argued forcefully that the days of one-size-
fits-all are gone [18] and that a proliferation of specialized
solutions is to be expected.

Although not endorsed by Stonebraker, one of the major
development trends in data management ’officially’ started
with Google’s MapReduce framework [3], which outright
rejected the RDBMS orthodoxy by building a custom solution
that emphasizes flexible data representation, performance and
scalability over consistency and transactional integrity. Google
kept its code proprietary, but follow up efforts produced a
multitude of open-source data stores aimed at large-scale
solutions often referred to as ”NoSQL”. We prefer the term
schemaless as it better describes one of the essential reasons
for their development. A number of open schemaless database
stores are in production by ”big data” companies like Amazon,
Facebook, Twitter, etc.

This is not to imply that traditional RDBMS are going
extinct–for many types of business application, the OLTP
(online transaction processing) model fits perfectly and is
irreplaceable. The issue is, which one of the two alternatives–
relational or schemaless databases–fits our problem space
better. We believe the argument boils down to two criteria:

Consistency Model. Reliability guarantees, as exempli-
fied by ACID (atomicity, consistency, isolation, durability)
properies, are central to the OLTP model. Harizopoulos et
al. [8] have recently quantified the costs of these guarantees
and have shown that a performance-optimized version with
reduced functionality transactions could work 20 times faster
than its full-featured counterpart. Such an approach is in
line with what large Web companies like Google, Amazon,
Facebook, and Yahoo! have embraced.

Does forensic processing (hashing, indexing, carving, etc)
need ACID transactions? It does not.

Forensic (pre-)processing is a batch process–given n arti-
facts (e.g. files) and k functions (hash, index), the workload
consist of applying (up to) k functions to each of the n
artifacts. Virtually all units of processing currently done con-
cern a single artifact and artifacts are immutable; thus, there
are almost no dependencies and race conditions–concurrency
control is trivial. Recovery is also trivial as all operations are
reproduceable–all we need is a persistent logging mechanism
to keep track of progress and resume from the failure point.

Our inevitable conclusion is that current tools like FTK (w/
Oracle) and PyFLAG (MySQL) have it wrong–the ACID costs
cannot be justified by the type of workload being serviced.

Data Model. In the relational model [2], all data is first
normalized and broken into a set of relations that are mapped
to tables with fixed column structure such that data duplication
is minimized. During queries, data is reconstructed by means
of join operations on key attributes. In the schemaless model, a
table can have any number of attributes of any type, including
perhaps hierachical ones. Data is typically not normalized and
table structure need not be declared ahead of time.

In practice, the relational model tends to result in a large
number of tables that, by themselves, are not particularly
meaningful to a user, or a third party developer, and require



considerable effort to understand. More importantly, incorpo-
rating new types of processing that would produce new types
of data, means that new tables must be dynamically created
and old ones potentially adjusted; in a large database this is a
heavyweight operation.

The schemaless model is much more flexible and can easily
accommodate any type of data that needs to be stored. It is
easy to understand as data tends to be centralized in a small
number of tables indexed by a few keys. For example, if
we used a file name as the key, we could trivially model
all metadata associated with the file– timestamps, hashes,
keywords, investigator notes, etc.–as separate attributes that
can be retrieved with a single lookup. On the downside, joins
become programmer’s concern; yet, they are rarely necessary
as data is denormalized and can usually be retrieved from a
single table. A somewhat bigger concern is the schemaless
solutions eschew SQL (hence the ’NoSQL’ label) and there is
no standardized query interface. Most of the shortcomings are
manageable and systems like MongoDB6 even provide indexes
and an API that make SQL-like queries easy.

Our conclusion is that the schemaless model fits our work-
load much more naturally than the relational one. This will
be reinforced shortly when we consider extensibility and the
addition of new functions and corresponding result sets.

B. Extensibility

Early Web development was centered on its original mission
of delivering hyperlinked documents to users via a browser
interface. Over time, as Internet technologies matured, and
bandwidth became much more plentiful, the Web inteface
started to become more interactive and to resemble the desktop
experience. The introduction of Gmail and Google Maps
(2004/05) put this movement into overdrive and, by now,
the set of technologies collectively known as Ajax [7] have
matured, standards are established, and wholesale replacement
of traditional desktop applications is taking place.

Unseen by users, an even more important development is
taking place under the surface–the Web is becoming an open
collection of services that can be composed to build new
applications. It may appear that nothing conceptually new has
happened–XML-centric web services have been pushed by
enterprises for while. Yet, the ’new’ Web is centered along
a new set of lightweight data encodings (JSON7, Protocol
Buffers8, Thrift9) and simple, RESTful[5] services.

As it turns out, XML is not only inefficient for encod-
ing distributed network communications, but is not easy to
integrate with prevalent database technology. Thus, JSON
became the basis for the internal representation of many of the
new data stores discussed earlier. This carries some obvious
performance advantages in that data retrieved from the store
can be put onto the wire and eventually interpreted by a GUI
component with minimal overhead.

6http://mongodb.org
7http://json.org
8http://code.google.com/p/protobuf/
9http://incubator.apache.org/thrift/

This new approach offers substantial advantages in terms
of extensibility, even for a closed system like an investigative
environment. We can easily integrate new capabilities at three
different levels–database, network, and UI. Integration at the
database level, allows for new types of forensic modules
to expand the processing database with new types of data
(hashes, indexes, etc.), subsequent queries easily incorporate
and present the data as long as as few basic data types are used.
At the network level, completely new services can be offered;
for example, a traditional database is fundamentally unsuitable
for known file filtering so a new module could easily step in
and provide that service more efficiently. The UI level is the
natural place to incorporate new visualization and rendering
components; modern browsers already provide ready platforms
to manage the addition of new UI components.

C. Cost

The Web is driven by ’big data’ and the success of an
Internet company is often determined by its ability to cost-
effectively scale its operations. Google was the first big
company to chart its own way and to devise novel ways of
storing and processing large data. We can think of Google’s
BigTable [1] as democratizing large scale databases the way
Beowulf10 clusters democratized high-performance comput-
ing. It is hard to overstate the importance of this development–
all of a sudden, it became feasible to handle huge data sets
without massively deploying expensive RDBMS technology.
This breakthrough prompted massive open-source develop-
ment that has since replicated, deployed, and field-tested much
of Google’s technology. Today, we can leverage that effort
to solve our data challenges at a nominal cost and minimal
technological risk.

D. User Inteface

The rise of the browser as the universal GUI platform for
applications has been predicted for over a decade. At this
point, many of the growing pains are behind us and the
widespread adoption of the upcoming HTML5 [9] standard
obviates the need to rely on proprietary technologies like
Adobe Flash11 and Microsoft Silverlight12 to deliver full-
featured applications. There is a thriving competition among
Web browser platforms as leading technology companies like
Google consider them critical to their success; as a result, new
features and optimizations are delivered at a rapid pace.

Open standards have lead to an explosion of browser-
centric UI frameworks–ExtJS, jQuery, YUI, Dojo–that provide
more than enough functionality to cover the needs of existing
forensic applications. Visualization frameworks, such as the
JavaScript InfoVis Toolkit13 are already providing meaningful
support for common visualizations. More broadly, with the
adoption of WebGL and the continuous improvements in

10http://www.beowulf.org/
11http://www.adobe.com/products/flashplayer/
12http://silverlight.net
13http://thejit.org



processing power, there are few practical limitations to running
the entire interface inside a browser.

IV. SYNTHESIS: A SOLUTION SKETCH

In this section, we put together the results of out analysis
and sketch out the architectural model of a core digital forensic
infrastructure that we are using to build a scalable solution
along the lines discussed so far.

A. Design Manifesto

We start by outlining a few foundation principles; these are
not in any way original (or completely orthogonal) but simply
the ’all-stars’ from other successful projects.

Simplicity. The vast majority of the open source projects
we seek to emulated grew from a small core and a simple
extension mechanism–Snort, Wireshark, Metasploit.

Reuse. There is a significant body of general purpose tools
(databases, high-performance file system, search engines) and
forensic tools (hashing, carving) that are readily available. We
seek to provide a common mechanism by which these can be
incorporated into the infrastructure with modest effort.

Modularity. We seek to provide a set of core functions that
are common to any integrated environment along with a basic
set of services to make the first iteration of the system robustly
usable. Follow up expansion is to be accomplished by means
of specialized modules, to be contributed by the community.

Heterogeneity and common protocols. Open source devel-
opment has a bit of a ’creative chaos’ feel to it–enthusiasm
can run high but there are as many opinions as there are
participants and there is no absolute authority to make de-
cision. We advocate simple, efficient protocols that allow
great implementation flexibility and inclusiveness. Common
protocols and service interfaces will lower the barriers for
developers–they can focus on one specific service without
having to reimplement everything else. Investigators will also
win as they would be able to choose among competing
implementations, or provide their own.

Inclusiveness. An open architecture does not mean that
commercial vendors (established and new) are to be excluded–
we see nothing wrong with programmers getting paid. When
fully developed, we envision a stable infrastructure that is free
and can hanldle common cases and be used for training. It
seems natural that advanced/specialized modules would be
commercial (at least until a free alternative is developed).
There are numerous successful projects that follow this dual
approach and have lead to a thriving eco-system of developers.

B. Architecture

Conceptually, we can view the forensic processing as using
either raw data, or metadata, to produce metadata that a human
analyst can use to draw conclusions. Under this working
definition, we can distinguish several types of metadata:

• Zero-order metadata consists of attributes directly asso-
ciated with an artifact and is readily available. Access to
it requires no computation to extract and is I/O-bound.

• First-order (computed) metadata is the result of directly
applying a computation to source data; depending on
the computation, it could be I/O-bound, CPU-bound, or
both. Hashing, indexing, carving are perfect examples of
common functions that produce computed metadata.

• Higher-order metadata is the result of using existing
metadata to produce results with higher levels of infor-
mation content. For example, comparing hashes reveals
relationships among artifacts whereas the actual hashes
are of no direct use to the investigator.

The first component of our approach is the simple real-
ization that data and metadata need to be treated differently.
The volume of metadata is orders of magnitude less than
the original data and the two face very different workloads.
The performance-critical access to the data happens during
the first-order processing. The primary requirement for the
data store is to have high enough throughput to feed the
data to a distributed system on which the computation is
run. Once processing is complete and results stored, the only
access necessary is to load individual artifacts on demand for
rendering. For that purpose, even a plain file system on a
regular hard drive will be quite adequate. On the other hand,
metadata storage faces completely different demands–it needs
to be able to support incremental updates and massive queries–
so a database store is called for.

The core set of infrastructure functions can be reduced to
three–data import, service management, and scheduling. Data
import is responsible for mounting data containers such that
first-order processors can access them in a standard manner,
such as a POSIX file system interface. Service management
allows for new services to be registered, discovered, and
instantiated. Scheduling oversees the relative ordering and
optimal mapping of services to available resources, based on
computational costs, user priorities, and I/O constraints. All
remaining functions can be introduced as autonomous modules
via the service management interface (Figure 3).

To illustrate, let us consider the example of integrating file
correlation capabilities based on similarity hashes. Currently,
there are two different tools that produce different kinds of
hashes–ssdeep[10] and sdhash[17]. For each, we decompose
the tool into three separate functions–hash generation, hash
comparison, and visualization– which are registered with the
core service management component. Hash generation is a
first-order function so it is run as part of the target’s pre-
processing. During the analysis step, the investigaor uses a
standard navigation component to specify sets of objects for
the comparison step, which is performed by the respective hash
comparison components. The end result of that computation
is a number between 0 and 100 for every pair of objects
considered. A graph-based interface can then be used to
present an appropriate visualization of the results. Note that
navigation and visualization components can be shared not
between the across the two services, but also with other
analytical tools to provide a familiar user experience. The
result of the file correlation could be used by subsequent tools
to perform higher-order analysis like clustering, aggregation,



Fig. 2. Proposed open forensic architecture

Hashing	  

Data	  Store	  

Indexing	  

Carving	  

…	  

Metadata	  Store	  

Data	  Import	  
Scheduling	  

Browser-‐based	  GUI	  

VisualizaBon	  NavigaBon/Query	   Case	  Mgmt	  

Hash	  Filter	  

Data	  CorrelaBon	  

Time	  Analysis	  

…	  

User	  Interface	  

Services	  

Core	  Infrastructure	  

Zero-/5irst-order	  services	   Higher-order	  services	  

Service	  
Mgmt	  

Raw	  data	  'low	  

REST/JSON	  (meta-‐)data	  'low	  

Control	  'low	  

outlier analysis.

V. CONCLUSION

The main contribution of this paper is to analyze current
approaches to building integrated digital forensic tools and
to propose alternatives based in recent developments in Web-
centric technologies. We showed that current approaches, both
commercial and open source, are not data and cost scalable in
the face of fast data growth; they poorly support extensibility
to incorporate new types of processing, and provide inade-
quate user interface abstractions to deal with large data sets.
Specifically, our analysis lead us to the following conclusions:

Data Scalability. The current use of traditional RDBMS,
like Oracle and MySQL, is out of sync with the actual
requirements of forensic workloads. In particular, the high
performance cost penalty of transactional processing is not
justifiable for forensic work sets as all forensic processing is
(and must always) be reproducible. Therefore, a lightweight
and scalable data store, such as schemaless databases currently
employed by large web enterprises, are a much better fit.

Cost. Current cost models do not fit the needs of the
forensics community to build cost-effective infrastructure for
dealing with large targets. The licensing costs of commercial
tools is high for large-scale deployment and, due to the closed
nature of the products, does not guarantee that all needs will
be met. Integrated open-source tools are still not providing
distributed processing capabilities, while command-line tools
are difficult to integrate based on loosely defined plaintext I/O
interfaces. In our view, the way forward is to build an open
and robust core infrastructure that can then be extended by
both the open-source community and commercial vendors.

Extensibility. Successful open infrastructure projects grow
out of a robust functional core and lightweight extension
mechanism that allow good separation of concerns. Once the
system picks up critical mass of community support, it would

become the natural focal point for the development of best-of-
breed solutions, it would facilitate testing and standardization,
and would be ideal for training purposes at all levels.

User Inteface. Current UI designs are decades old and are
fundamentally unsuitable for organizing the investigation of
massive targets. An open architecture can directly benefit from
the fast development of visualization tools for the web and can
be integrated at minimal effort.

On balance, we believe that the digital forensics fields is too
small and can ill afford to build all of its tools from the ground
up. Instead, it must gain leverage by opportunistically aligning
itself with technologies that are being openly developed for
the Web by big technology providers. This allows for reusing
developed solutions and focusing most of the development
effort on forensic-specific problems. We sketeched out a
minimalistic design based on the a bove analysis and are in
the processes of building a proof-of-concept prototype.

REFERENCES

[1] Chang, F. et al. ”Bigtable: A Distributed Storage System for Structured
Data”, OSDI’06: Seventh Symposium on Operating System Design and
Implementation, Seattle, WA, November, 2006.

[2] Codd, Edgar F (June 1970). ”A Relational Model of Data for Large
Shared Data Banks”. Communications of the ACM 13 (6): 37787.
doi:10.1145/362384.362685

[3] Dean, J. and Ghemawat, S., ”MapReduce: Simplified Data Processing
on Large Clusters”, OSDI’04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA, December, 2004.

[4] Fielding, R., ”Chapter 5: Representational State Transfer (REST)”, in
”Architectural Styles and the Design of Network-based Software Archi-
tectures”, Doctoral Dissertation, University of California, Irvine, 2000.
http://www.ics.uci.edu/ fielding/pubs/dissertation/rest arch style.htm

[5] ”AccessData Distributed Processing”, http://accessdata.com/distributed-
processing

[6] Garrett, J., ”Ajax: A New Approach to Web Applications”, 2005,
http://www.adaptivepath.com/ideas/essays/archives/000385.php

[7] Stavros Harizopoulos, S., Abadi, D., Madden, S. and Stonebraker, M.,
”OLTP Through the Looking Glass”, and What We Found There, ACM
SIGMOD 2008.

[8] W3C, ”HTML5 A vocabulary and associated APIs for HTML and
XHTML”, 2011, http://dev.w3.org/html5/spec/Overview.html

[9] Kornblum, J., ”Identifying almost identical les using context triggered
piecewise hashing”, DFRWS 2006.

[10] Marziale, L., Richard, G., Roussev, V., ”Aassive Threading: Using GPUs
to Increase the Performance of Digital Forensics Tools”, DFRWS 2007.

[11] OCZ IBIS 3.5” HIGH-SPEED DATA LINK SSD,
http://www.ocztechnology.com/ocz-ibis-3-5-high-speed-data-link-
ssd.html

[12] ”RCFL Annual Report for Fiscal Year 2009”,
http://rcfl.gov/downloads/documents/RCFL Nat Annual09.pdf

[13] Richard, G., Roussev, V. Next Generation Digital Forensics: Strategies
for Rapid Turnaround of Large Forensic Targets. Communications of the
ACM, Vol. 49(2), Feb 2006.

[14] Roussev, V., Richard, G., ”Breaking the performance wall: the case for
distributed digital forensics.”, In: Proceedings of the 2004 digital forensics
research workshop (DFRWS 2004).

[15] Roussev, V., Wang, L., Richard, G., Marziale L. A Cloud Computing
Platform for Large-scale Forensic Computing, In Peterson, G., Shenoi S.,
Research Advances in Digital Forensics V. Springer, 2009.

[16] V. Roussev, ”Data Fingerprinting with Similarity Digests”, in K.-P.
Chow, S. Shenoi (Eds.): Advances in Digital Forensics VI, IFIP AICT
337, pp. 207-225, 2010

[17] Stonebraker, M., et al. ”One Size Fits All? Part 2: Benchmarking
Studies”. CIDR 2007: 173-184

[18] WD Caviar Green Specification Sheet,
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-
701229.pdf


