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a b s t r a c t

This paper explores the use of purpose-built functions and cryptographic hashes of small

data blocks for identifying data in sectors, file fragments, and entire files. It introduces and

defines the concept of a “distinct” disk sectorda sector that is unlikely to exist elsewhere

except as a copy of the original. Techniques are presented for improved detection of JPEG,

MPEG and compressed data; for rapidly classifying the forensic contents of a drive using

random sampling; and for carving data based on sector hashes.
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1. Introduction

Much of computer forensics practice has focused on the

recovery of files from media and the establishment of time-

lines. This paper presents research in the area of bulk data

analysis, and specifically in the forensics of small data blocks.

There is a growing need for automated techniques and

tools that operate on bulk data, and specifically on bulk data at

the block level:

� File systems and files may not be recoverable due to

damage, media failure, partial overwriting, or the use of an

unknown file system.

� Theremay be insufficient time to read the entire file system,

or a need to process data in parallel.

� File contents may be encrypted.

� The tree structure of file systemsmakes it hard to parallelize

many types of forensic operations.

All of these problems can be addressed through the use of

small block forensics. When individual files cannot be

recovered, small block techniques can be used to analyze file

fragments. When there is insufficient time to analyze the

entire disk, small block techniques can analyze a statistically

significant sample. These techniques also allow a single disk

image to be split into multiple pieces and processed in

parallel. Finally, because each block of an encrypted file is

distinct, block-level techniques can be used to track the

movement of encrypted files within an organization, even

when the files themselves cannot be decrypted, because every

block of every well-encrypted file should be distinct.

In this paper we introduce an approach for performing

small block forensics. Some of this work is based upon block

hash calculationsdthat is, the calculation of cryptographic

hashes on individual blocks of data, rather than on entire files.

Other work is based on bulk data analysisdthe examination of

blocks of data for specific features or traits irrespective of file

boundaries.

Although we discuss these techniques in the context of

files, they can be applied with equal validity to data from

memory images and from computer networks at either the

level of IP packets or reassembled TCP streams.
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1.1. Outline of this paper

This paper starts with an extended review of the prior work

(Section 2). Next we present theoretical arguments and

experimental results using the approach of using globally

distinct sectors for content identification (Section 3). We then

present a series of discriminators that we have developed for

identifying small blocks of JPEG, MPEG, and Huffman-encoded

data (Section 4). We present lessons learned (Section 5) and

conclude with opportunities for future work (Section 6).

2. Prior work

Libmagic is a widely used file identification library that is the

basis of the Unix file command (Darwin, 2008). Libmagic is

reasonably accurate at identifying complete files and does so

by looking for characteristic headers or footers (“magic

numbers”). As a result, libmagic can only classify fragments of

files that contain these elements.

The classification of fragments taken from the middle of

a file has been an area of research for the past decade. Much of

this work has been performed with the goal of making file and

memory carving more efficient. McDaniel introduced the

problem with a technique that combined the recognition of

type-specific file headers and footers with statistical classifi-

cation based on the frequencies of unigrams (McDaniel, 2001).

Others attempting file fragment classification based on unig-

ram and bigram statistics include Calhoun and Coles (2008);

Karresand and Shahmehri (2006); Li et al. (2005); Moody and

Erbacher (2008) and Veenman (2007).

Roussev and Garfinkel analyzed the statistical approach

and determined that many of the reported results were inac-

curate as they did not take into account the fact that certain

file types, such as Adobe Acrobat files, are actually container

files (Roussev and Garfinkel, 2009). Attempts to distinguish

PDF fragments from fragments of JPEG files are inherently

flawed, they argued, because Acrobat files frequently contain

embedded JPEGs; furthermore, naı̈ve statistical classification

approaches based on n-gram statistics are unlikely to be

successful due to the statistical properties of compressed

data. They advocated a more specialized approach based on

a better understanding of the underlying file formats.

Speirs et al. filed a US patent application that presented

a variety of approaches for distinguishing compressed and

encrypted or random data (Speirs and Cole, 2007). We are not

aware of any other work in this area.

As part of his solution to the DFRWS 2006 Carving Chal-

lenge, Garfinkel used fragments of text from the Challenge to

create Google query terms, fromwhich he was able to find the

very source documents on the Internet that had been used to

assemble the Challenge. Garfinkel then broke these docu-

ments into 512-byte blocks, computed the MD5 hash of each

block, and searched the Challenge for 512-byte sectors with

matching hash codes. Using this technique, dubbed “the MD5

trick,” Garfinkel identified three of the documents in the

challenge image, including a Microsoft Word file that was

divided into three fragments (Garfinkel, 2006a).

As part of their solution to the DFRWS 2007 Carving Chal-

lenge, Al-Dahir et al. developed mp3scalpel, a program that

recognizes adjacent sectors of an MP3 file by validating frame

headers (Al-Dahir et al., 2007). We have used their idea and

some of their code in the development of our MP3 discrimi-

nator (Section 4.3.3).

Believing that MD5 and SHA1 algorithms were too slow for

hash-based carving, Dandass et al. performed an analysis of

the SHA1, MD5, CRC64 and CRC32 hash codes from 528million

sectors taken from 433,000 JPEG and WAV files to determine

the collision rate of these algorithms for data found in thewild

(Dandass et al., 2008). Collange et al. introduced the term

“Hash-based Data Carving” for Garfinkel’s “trick” and

proposed using GPUs to speed hash computations (Collange

et al., 2009).

3. Distinct block recognition

Cryptographic hashes are a powerful tool for analyzing the

flow of content within criminal networks. If a network is

known to be distributing a file with a specific hash and if a file

on the subject’s hard drive has the same hash, then it is

reasonable to infer that the subject has had contact with the

criminal network. This inference depends upon the hash

being collision resistant so that it is extremely unlikely for two

files to have the same hash. But it also depends on the file

itself being rare, and not commonly found on systems that are

used by individuals outside the criminal network.

As discussed in Section 2, many have tried to extend the

concept of file hashes to hashes of small blocks or even indi-

vidual disk sectors. For example, Garfinkel suggested that

finding a shared sector between two different hard drivesmay

imply that a file containing that sector was copied from the

first drive to the second (Garfinkel, 2006b). Using hashes for

this purpose requires more than collision resistance on the

part of the hash function: it requires that the sectors or blocks

being hashed be distinct.

There has been surprisingly little formal discussion or

analysis regarding the prevalence of distinct sectors. For

example, it is believed that individual digital photographs are

distinct because of the amount of randomness within the

world around us. On the other hand, our analysis of JPEGs

shows that many JPEGs contain common elements such as

XML structures, EXIF information and color tables. So while

many JPEGs as a whole may have a distinct cryptographic

hash, the individual blocks within one JPEG may be repeated

in others.

3.1. Understanding “distinct”

The Greek philosopher Heraclitus is credited with the

expression “you cannot step twice into the same river.” This

comment on the nature of change is surprisingly relevant to

the study of computer forensicsdbut with an important twist.

The flexibility that language gives us to assemble words

into sentences means that many sentences we say or write in

day-to-day discourse have never been used before and will

never be used again. The widespread existence of such

distinct sentences is made all the more clear today with

search engines that allow searching for quoted phrases: take

a sequence of seven or eight sentences from any newspaper
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story and search for them. In many cases search engines will

report only a single matchdthe original story.

Consider the phrase “Greatness is never given. It must be

earned” taken from President Obama’s inauguration speech.

Although the sentiment seems common enough, our searches

with Google and Yahoo for this quoted phrase only found

references to the President’s inauguration speech, and no

occurrence of this eight-word sequence beforehand. The great

variation made possible by natural languages is one reason

that plagiarism detection engines such as Turnitin can be so

successful.

Other word sequences are not distinct. “To be or not to be”

and “four score and seven years ago” were once original

constructions, but their fame has made them commonplace.

However, it is fair to suggest that any occurrence of these

six-word sequences are either copied from the original, or else

a copy of a copy.

The same measure of distinctness can be applied to indi-

vidual disk sectors. There are 2512�8 z 101,233 different

512-byte sectors. This number is so impossibly large that it is

safe to say that a randomly generated 512-byte pattern will

never appear anywhere else in the universe unless it is

intentionally copied. You cannot step twice into the same

random number generator.

On the other hand, a sector that is filled with a constant

value cannot be distinct: there are only 256 such sectors.

It is possible to determine that a sector is not distinct, but it

is impossible to create a function that states with certainty

that a sector is distinct. Certainly sectors that have high

entropy are likely to be distinct, but some sectors that have

low entropy are also likely to be distinct. A 512-byte sector

with 500 NULLs and 12 ASCII spaces is likely to be distinct if

the spaces are randomly distributed within the sector, since

there are 512!=500!z1033 possible arrangements of the spaces.

Nevertheless, the arrangement of all of the spaces at the

beginning of the sector is almost certainly not distinct.

A randomly generated sector is certainly distinct at the

moment it is created. But if that sector is widely distributed

and incorporated into other files, then it is no longer distinct.

3.2. The distinct block definition and hypotheses

Given the preceding, we propose this definition:

Distinct Block (definition): A block of data thatwill not arise by

chance more than once.

Distinct blocks need to be manufactured by some random

process. Blocks taken froma JPEG createdby adigital camera in

total darkness are unlikely to be distinct, but the same camera

taking pictures outside on a sunny day will surely generate

distinct blocks:Youcannot step twice into the samesunnyday.

Distinct blocks can be a powerful forensic tool if we assume

these two hypotheses:

Distinct Block Hypothesis #1: If a block of data from a file is

distinct, then a copy of that block found on a data storage

device is evidence that the file was once present.

Distinct Block Hypothesis #2: If a file is known to have been

manufactured using some high-entropy process, and if the

blocks of that file are shown to be distinct throughout a large

and representative corpus, then those blocks can be treated as

if they are distinct.

3.3. Block, sector, and file alignment

Many of the techniques that we have developed take advan-

tage of the fact thatmost file systems alignmost files on sector

boundaries. That is, a 32KiB file F can be thought to consist of

64 blocks of 512 bytes each, B0.B63. If this file is stored

contiguously on a drive that has 512-byte sectors, then it will

be the case that block B0 will be stored at some sector Sn, B1 will

be stored at Snþ1 and so on. This so-called sector alignment has

a significant performance advantage, as it allows the oper-

ating system to schedule data transfers directly from the

storage medium into user memory.

Sector alignment can be exploited in forensic analysis by

choosing a block size that matches the the sector size: if F

contains 32KiB of distinct datadthat is, data which is not

found elsewhere on the diskdthen there will be an exact

correspondence between block hashes of the file’s 64 512-byte

blocks and 64 sectors of the drive. Notice that this will be true

even if the file is fragmented, provided that it is fragmented on

a sector boundary.

Not all files are stored sector aligned. In particular NTFS

stores small files in the Master File Table. Such files are not

susceptible to some of the techniques presented here.

3.4. Choosing a standard block size

It is useful to employ a consistent block size when performing

small block forensics. The block size must be smaller than the

typical size of a file of interest to avoid padding issues. But

there is no optimal size. Small block sizes increase the

resolving power of our tools but also increases the amount of

data that needs to be analyzed. Nevertheless, algorithmsmust

be tuned to a specific block size, and databases of hash codes

need to be computed with a specific block size for general

distribution.

Today most hard drives use 512-byte sectors, so this is

a logical size for small block forensics. Nevertheless, we

standardize on 4096-byte blocks for most of our work for

a variety of reasons, including:

� When working with block hashes, a block size of 4096 bytes

generates 1
8 the data as a block size of 512 bytes. This

dramatically reduces data storage requirements and speeds

processing times.

� The bulk data discriminators that we have developed

(Section 4) are significantly more accurate with 4096-byte

blocks than 512-byte blocks.

� Since most files of forensic interest are larger than 4096

bytes, the decreased resolution that results from working

with 4096-byte blocks is less significant.

� Finally, the storage industry is moving to 4096-byte sectors,

meaning that future drives will write 4096 bytes atomically

the way that current drives write 512 bytes atomically

(Fonseca, 2007).

3.5. Managing 4096-byte blocks with 512-byte sectors

When working with devices that have a 512-byte sector size it

is a simplematter to combine eight sectors into a single block.

However, because the alignment of sectors-to-blocks might
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change within a single disk, in practice it is useful to combine

a run of 15 sectors into eight overlapping 4096-byte blocks:

S0S1S2S3S4S5S6S7 ¼> B0

S1S2S3S4S5S6S7S8 ¼> B1

.
S7S8S9S10S11S12S13S14 ¼> B7

Thus, when performing a match against a database of 4KiB

sector hashes with a 512-byte device, it is useful to search the

database for B0.B7, rather than just B0.

3.6. Experimental results

Using the nps-2009-domexusers (Garfinkel et al., 2009) disk

image, we computed the number of distinct and duplicated

blocks with block sizes of 29 (512 bytes) through 214 (16,384

bytes) (Table 1).

The first processing step was to remove constant blocks.

Overwhelmingly most of the blocks removed were filled with

hex 00, although many sectors filled with FF and other values

were also removed. As there are only 256 constant blocks we

felt that these blocks would be of limited probative value.

We found that nps-2009-domexusers contains roughly

6.7 GB of data, a figure that includes allocated file content,

residual data, file system metadata, directories, and other

non-file content. The fact that roughly the same amount of

data remained irrespective of the blocksize implies that the

feature size of the file system’s allocation strategy is larger

than 16,384 bytes. This lends credence to our claim that small

block forensics need not be performed using the native

media’s sector size (in this case, 512 bytes).

Next we computed the SHA-1 hash of each block and

stored the results in a 232-bit Bloom filter with k ¼ 4. Our

implementation started with Farrell’s (Farrell et al., 2008) and

added a GNU Cþþ Standard Template Library map to count

the number of times that each SHA-1 value is encountered

(space in themap is conserved by only adding hash values the

second time that a hash is encountered). This code allowed us

to calculate the number of distinct blocks and the number of

duplicated blocksdthat is, blocks that appeared more than

once on the disk.

By design, Bloomfilters cannot have false negatives but can

have false positives. A Bloom filter with m ¼ 232 and k ¼ 4

storing 80 million elements is predicted to have a false posi-

tive rate p < 2.66 � 10�5. Thus, even if every 512-byte sector in

nps-2009-domexusers were distinct, there would be less than

2500 false positives, which is irrelevant for the purposes of the

statistics shown in Table 1. The low false positive rates are

reflected by the very lowBF utilization shown in the last row of

Table 1. In fact, this experiment could have been done with

a significantly smaller BF; with M ¼ 30 the BF would consume

only 128 MiBytes (instead of 512 MiB) and would still have

a worst-case false positive rate of p z 0.0044.

Sector duplication can result from duplication within files

(repeated regions), or frommultiple copies of file on a drive. As

Table 1 shows, approximately half of the non-constant con-

taining sectors on nps-2009-domexusers are distinct.

The fraction of distinct sectors increases with larger block

sizes. One possible explanation is that the duplicate sectors

are frommultiple copies of the same file. Recall that most files

are stored contiguously. With small sampling block sizes

there is a good chance that individual files will align with the

beginning of a block sample. But as the sampling size

increases, there is an increased chance that the beginning of

a file will not align with a sampling block. If two files align

differently, then the block hashes for the two files will be

different.

Moving from 512-byte blocks to 4096-byte blocks results in

an 8-fold reduction in data processing requirements but

produces only a 27% increase in the percentage of distinct

sectors. As a result, we feel that the 4KiB block size is a good

compromise between performance and accuracy when per-

forming block hashing.

To test this hypothesis, we conducted a large-scale study of

data blocks from a dataset of reference files and from a corpus

of disk images.

We started with 7,761,607 unique files extracted from the

National Software Reference Library (National Institute of

Standards and Technology, 2005) as of September 30, 2009.

For each file we calculated the SHA-1 hash for each 4096-byte

block. Where a file did not have a content size that is

a multiple of 4096, we have padded the file with NUL (00) bytes

to a size that is a multiple of 4096. These NSRL files had a total

of 651,213,582 4KiB blocks (1,436 GiB).

In our data set we identified 558,503,127 (87%) blocks that

were distinct and 83,528,261 (13%) that appeared in multiple

locations. By far the most common was the SHA-1 for the

block of all NULLs, which appeared 239,374 times. However

many of these duplicates are patterns that repeat within

a single file but which are not present elsewhere within the

NSRL, allowing the hashes to be used to recognize a file from

a recognized fragment.

Table 1 e Self-similar measurements of nps-2009-domexusers with different sector sizes. Constant blocks are removed.

Block Size: 512 1024 2048 096 8192 16,384

Blocks 83,886,080 41,943,040 20,971,520 10,485,760 5,242,880 2621,440

Removed blocks 70,897,785 35,413,863 17,683,597 8,833,713 4414,612 2,206,318

Data (blocks) 12,988,295 6,529,177 3287,923 1,652,047 828,268 415,122

Data (MB) 6650 6685 6733 6766 6785 6801

Distinct Blocks 7,236,604 3741,737 1,929,396 989,963 609,760 364,472

Duplicated Blocks 5,751,691 2787,440 1,358,527 662,084 218,508 50,650

Percent Distinct 56% 57% 59% 60% 74% 88%

BF Size 232 232 232 232 232 232

BF Utilization 1% 0% 0% 0% 0% 0%
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3.7. Application

This section discusses three applications that we have

developed that use of the properties of distinct blocks.

3.7.1. Hash-based carving with frag_find
Carving is traditionally defined in computer forensics as the

searchingfordataobjectsbasedon content, ratherthanfollowing

pointers in metadata (Garfinkel, 2007). Traditional carvers

operate by searching for headers and footers; some carvers

perform additional layers of object validation. Hash-based

carving, in contrast, searches a disk for “master” files already in

a corpus by performing sector-by-sector hash comparisons.

We have developed a tool called frag_find that achieves

high-speed performance on standard hardware. Here we

describe the algorithm using the terminology proposed by

Dandass et al. (2008) and Collange et al. (2009), although our

algorithm does not require the hardware-based acceleration

techniques that are the basis of their research:

1. For each master file a filemap data structure is created that

can map each master file sector to a set of sectors in the

image file. A separate filemap is created for each master.

2. Every sector of each master file is scanned. For each sector

the MD5 and SHA-1 hashes are computed. The MD5 code is

used to set a corresponding bit in a 224 bit Bloom filter. The

SHA-1 codes are stored in a data structure called the

shamap that maps SHA-1 codes to one or more sectors in

which that hash code is found.

3. Each sector of the image file is scanned. For each sector the

MD5 hash is computed and the corresponding bit checked

in the Bloom filter. This operation can be done at nearly

disk speed. Only when a sector’s MD5 is found in the Bloom

filter is the sector’s SHA-1 calculated. The shamap structure

is consulted; for eachmatching sector found in the shamap,

the sector number of the IMAGE file is added to the corre-

sponding sector in each master filemap.

4. Each filemap is scanned for the longest runs of consecutive

image file sectors. This run is noted and then removed from

the filemap. The process is repeated until the filemap

contains no more image file sectors.

Our hash-based carving algorithm covers both fragmented

master files and the situation where portions of a master are

present in multiple locations in the image file.

Our original hash-based carving implementation used

Adler-32 (Deutsch and Gailly, 1996) instead of MD5 as the fast

hash, but subsequent testing found that most MD5 imple-

mentations are actually faster than most Adler-32 imple-

mentations due to extensive hand-optimization that the MD5

implementations have received. Although the new algorithm

could dispense with SHA-1 altogether and solely use MD5, the

MD5 algorithm is known to have deficiencies. If the results of

hash-based carving are to be presented in a court of law, it is

preferable to use SHA-1. To further speed calculation we

found it useful to precompute the SHA-1 of the NULL-filled

sector; whenever the system is asked to calculate the value of

this sector, this value is used instead.

We prefer to use sectors for hash-based carving because

they are the minimum allocation unit of the disk drive. Larger

block sizes aremore efficient, but larger blocks complicate the

algorithm because of data alignment and partial write issues.

As a result, hash-based carving may fail to identify valid data

when used with block sizes larger than the sector size. Hence

our decision to carve with a blocksize equal to the sector size.

3.7.2. Preprocessing for carving with precarve
Often when performing file carving it is useful to remove from

the disk image all of the allocated sectors and to carve the

unallocatedspace.Ourexperiencewith frag_findshowedusthat

fragments of amaster file are often present inmultiple locations

on a disk image. This led us to the conclusion that it might be

useful to remove from the disk image not merely the allocated

files, but all of the distinct sectors from the image’s allocated

files. The result, we hoped, would be a carving target that would

be smallerandfromwhich itmightbepossible to recoverobjects

without the need to resort to fragment recovery carving.

After some experimentation we created a tool called pre-

carve that performs a modified version of this removal. We

found that removing distinct blocks was not sufficient, as

there were blocks that were shared in multiple files which

could not be safely removed.We re-designed the tool so that it

would remove any sequence of sectors from the unallocated

region that matchedmore than r allocated sectors. After trial-

and-error we found that r ¼ 4 provided the best performance

when carving JPEGs.

We tested precarve using the nps-2009-canon2-gen6

(Garfinkel et al., 2009) disk image. The disk image was

created with a 32 MB SD card and a Canon digital camera in

2009. Photos were taken and then deleted in such a manner

to create JPEGs that are fragmented in multiple places and

other images that can only be recovered through file

carving. Carving was performed with Scalpel version 1.60

(Richard and Roussev, 2005).

Scalpel recovered 76 JPEGs with some displayable content

and 37 for which nothing could be displayed. After running

precarve we were able to recover two displayable JPEG frag-

ments and one full-size image (G2-3) that had not previously

been recovered. Because the precarve process requires no

human intervention, there is no reason not to include this

algorithm in current forensic protocols that involve the

carving of unallocated space.

3.8. Statistical sector sampling to detect the presence of
contraband data

Sector-based hashing can be combined with statistical

sampling to provide rapid identification of residual data from

large files. This might be especially useful at a checkpoint,

where the presence of a specific file might used as the basis to

justify a more thorough search or even arrest.

Consider a 100 MB video for which the hash of each

512-byte block is distinct. A 1 TB drive contains approximately

2 billion 512-byte sectors. If one 512-byte sector is sampled at

random, the chance that the data will be missed is over-

whelmingd 2,000,000,000 � 200,000/2,000,000,00 ¼ 0.9999. If

more than one sector is sampled the chances of missing the

data can be calculated using the equation:

p ¼
Yn

i¼1

ððN� ði� 1ÞÞ �MÞ
ðN� ði� 1ÞÞ (1)
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Where N is the total number of sectors on the media, M is the

number of sectors in the target, and n is the number of sectors

sampled. Readers versed in statistics will note that we have

described the well-known “Urn Problem” of sampling without

replacement (Devore, 2000).

If 50,000 sectors from the TB drive are randomly sampled,

the chance of missing the data drops precipitously to

p z 0.0067 (N ¼ 2, 000, 000, 000, M ¼ 200, 000 and n ¼ 50, 000.)

The odds of missing the data are now roughly 0.67%din other

words, there is a greater than 99% chance that at least one

sector of the 100 MB file will be found through the proposed

random sampling.

4. Fragment type discrimination

Given a fragment of a file, the first thing that onemightwish to

do is to determine the kind of file from which the fragment

was taken: did the fragment come from a JPEG image file,

a PDF file, a Microsoft Word file, or some other source?

4.1. “Discrimination,” not “identification”

To the trained forensic investigator that has seen the inside of

many files, the fragment type identification problem doesn’t

seem so hard. After all, many file types have distinct charac-

teristics. For example, the ASCII sequences shown in Fig. 2 are

commonly seen in JPEG files, Fig. 3 is indicative of Microsoft

Word files, and Fig. 4 is characteristic of a PDF file.

Although the investigator’s intuitionmay be correct, it is of

limited value for two reasons. First, although every file type

does have distinct sequences, a block-by-block analysis of files

indicates that most file blocks lack these distinctive features.

A second important problem, noted in the literature review, is

that much of the previous work has failed to take into account

the fact that PDF,MicrosoftOffice, andZIPfilesare container files

in which JPEGs are frequently embedded without alteration.

Thus, there is no discernible difference between a block taken

from themiddle of a JPEG file and one taken from themiddle of

a JPEG image embedded within a PDF file.

Because container files can combine files of different types

on byte boundaries, we believe that the phrase fragment type

identification is inherently misleading: a single file fragment

can contain multiple types! Instead, we have adopted the

phrase fragment discrimination for this work. Adapting the

phrase from electronics, we are creating software devices that

produce an output when their input exceeds a certain

threshold. We argue that discrimination, rather than charac-

terization, is the correct approach when working with small

file fragments, since a fragment taken from a container file

might actually contain traces frommultiple document typesdfor

example, a fragment taken from a PDF file might contain both

PDF and JPEGmetadata, if a JPEG was embedded within the PDF.

4.2. Approaches

We have identified several approaches for small fragment

discrimination:

4.2.1. Header recognition
When a fragment is taken from the beginning of a file, tradi-

tional approaches based on the first bytes of a file can be used

to identify the fragment type. This approach takes advantage

of the fact that most file systems align the start of files on

sector boundaries for files larger than 1500 bytes.

4.2.2. Frame recognition
Many multimedia file formats employ repeating frames with

either a fixed or variable-length offset. If a frame is recognized

frombyte patterns and the next frame is found at the specified

offset, then there is a high probability that the fragment

contains an excerpt of the media type in question.

4.2.3. Field validation
Once headers or frames are recognized, they can be validated

by “sanity checking” the fields that they contain.

4.2.4. n-Gram analysis
As some n-grams are more common than others, discrimi-

nators can base their results upon a statistical analysis of

n-grams in the fragment.

Fig. 1 e Usage of a 160 GB iPod reported by iTunes 8.2.1 (6) (top), as reported by the file system (bottom center), and as

computing with random sampling (bottom right). Note that iTunes usage actually in GiB, even though the program displays

the “GB” label.

Fig. 2 e ASCII sequences commonly seen in JPEG files. The

first is the ASCII representation of the JPEG quantization

table; the second is a fragment of XML that is embedded in

many JPEGs by Adobe PhotoShop.
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4.2.5. Other statistical tests
Tests for entropy and other statistical properties can be

employed.

4.2.6. Context recognition
Finally, if a fragment cannot be readily discriminated, it is

reasonable to analyze the adjacent fragments. This approach

works for fragments found on a hard drive, as most files are

stored contiguously (Garfinkel, 2007). This approach does not

work for identifying fragments in physical memory, however,

as modern memory systems make no effort to co-locate

adjacent fragments in the computer’s physical memory map.

4.3. Three discriminators

In this subsection we present three discriminators that we

have created. Each of these discriminators was developed in

Java and tested on the NPS govdocs1 file corpus (Garfinkel et al.,

2009), supplemented with a collection of MP3 and other files

that were developed for this project.

To develop each of these discriminators we started with

a reading of the file format specification and a visual exami-

nation of file exemplars using a hex editor (the EMACS hexl

mode), the Unix more command, and the Unix strings

command. We used our knowledge of file types to try to

identify aspects of the specific file format that would be

indicative of the type and would be unlikely to be present in

other file types. We then wrote short test programs to look for

the features or compute the relevant statistics for what we

knew to be true positives and true negatives. For true nega-

tives we used files that we thought would cause significant

confusion for our discriminators.

4.3.1. Tuning the discriminators
Many of our discriminators have tunable parameters. Our

approach for tuning the discriminators was to use a grid

search. That is, we simply tried many different possible values

for these parameters within a reasonable range and selected

the parameter value that worked the best. Because we knew

the ground truth we were able to calculate the true positive rate

(TPR) and the false positive rate (FPR) for each combination of

parameter settings. The (FPR,TPR) for the particular set of

values was then plotted as an (X,Y) point, producing a ROC

curve (Zweig and Campbell, 1993).

4.3.2. JPEG discriminator
To develop our JPEG discriminator we started by reading the

JPEG specification. We then examined a number of JPEGs,

using as our source the JPEGs from the govdocs1 corpus

(Garfinkel et al., 2009).

JPEG is a segment-based container file in which each

segment begins with a FF byte followed by segment identifier.

Segments can contain metadata specifying the size of the

JPEG, quantization tables, Huffman tables, Huffman-coded

image blocks, comments, EXIF data, embedded comments,

and other information. Because metadata and quantization

tables are more-or-less constant and the number of blocks is

proportional to the size of the JPEG, small JPEGs are dominated

by metadata while large JPEGs are dominated by encoded

blocks.

The JPEG format uses the hex character FF to indicate the

start of segments. Because this character may occur naturally

in Huffman-coded data, the JPEG standard specifies that

naturally occurring FFs must be “stuffed” (quoted) by storing

them as FF00.

Our JPEG discriminator uses these characteristics to iden-

tify Huffman-coded JPEG blocks. Our intuition was to look for

blocks that had high entropy but which had more FF00

sequences than would be expected by chance. We developed

a discriminator that would accept a block as JPEG data if the

entropy was considered highdthat is, if it has more than HE

(High Entropy) distinct unigramsdand if it had at least LN

(Low N-gram count) FF00 bigrams.

Our ground truth files were drawn from the govdocs1

corpus. For true positives we used JPEGs. For true negatives we

used a combination of CSV, GIF, HTML, PNG, MP3s (without

cover art), PNGs, random data, ASCII text, WAV and XML files.

Our ground truth files were treated as a set of 30 million 4KiB

blocks (Table 2). These files were chosen specifically to avoid

container files such as PDF and Microsoft Word.

We performed a grid search with values of HE from 0 to 250

stepping by 10 and values of LN from 0 to 10. Each experiment

evaluated the JPEG discriminator with 30 million blocks of

data. The resulting ROC curve is shown in Fig. 5.

To find the best tunable values, we first chose points that

were closest to the upper-left cornerdthat is, with the highest

TPR and lowest FPR. Because there were three clusters of

values, we used accuracy as a tiebreaker. The cluster of values

at LN ¼ 1 was 98.91% accurate at best; LN ¼ 2 was 99.28%

accurate at best; and LN ¼ 3 was 99.08% accurate at best. In

each of these cases the best HE value was 220. We chose

LN ¼ 2. Table 3 shows the confusion matrix for this tuning

point.

4.3.3. The MP3 discriminator
MP3 files have a frame-based structure that is easily identified

in bulk data. Although frames may occur on any byte

boundary, each frame consists of a 4-byte header containing

Fig. 3 e ASCII sequence taken from a Microsoft Word file

showing the use of carriage returns between paragraphs

and “smart quotes.”.

Fig. 4 e ASCII sequence taken from within a PDF file,

showing a portion of the xref table and the characteristic

metadata encoding scheme.
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metadata for only the current frame. Frame headers have two

properties that makes them further amenable to fragment

identification:

� Each frame header starts with a string of 11 or 12 sync bits

(SB) that are set to 1.

� The length of the frame is exactly calculable from the

header.

To identify a fragment as MP3, we scan the fragment until

we find a byte pair that contains 11 or 12 set bits. We then

extract the frame’s bit rate, sample rate and padding flag from

their binary representation in the header. These values are

sanity-checked, after which the frame’s length is calculated

according to the formula:

FrameSize ¼ 144� BitRate
SampleRateþ Padding

(2)

The discriminator then skips forward FrameSize bytes and

checks to see if a second MP3 frame header is present. If the

bytes at the location do not contain sync bytes or sane values

for BitRate, SampleRate and Padding, then the discriminator

concludes that it there was a false positive and it starts

searching for the next byte pair thatmight contain sync bytes.

If the bytes at the location do contain sync bytes and sane

values for the header parameters, the discriminator skips

forward again, looking for the next frame. This is the same

algorithm as developed by Al-Dahir et al. for mp3scalpel

(Al-Dahir et al., 2007).

Our intuition was that the mp3scalpel algorithm could be

turned into a discriminator by simply accepting blocks that

had more than a certain number of frame headers. We call

this parameter CL (chain length). (This approach was not

applied to the JPEG discriminator because the JPEG format

does not contain framing information from which the chains

could be readily validated.)

We tuned theMP3 identifier in a similarmanner to the JPEG

discriminator. We defined ground truth positive as MP3s

without embedded album art. For ground truth negative we

used pseudorandom data, generated with/dev/urandom. We

found that SB values of 11 and 12 produced identical results,

indicating that our MP3s all had 12 sync bits. Chains of length

0 and 1 performed identically, but longer chains proved more

accurate. Table 4 shows the confusion matrix for chains of

length 4. The accuracy is 99.56%.

4.3.4. The huffman-coded discriminator
The DEFLATE compression algorithm is the heart of the ZIP,

GZIP and PNG compression formats. Compression symbols

are coded with Huffman coding. Thus, being able to detect

fragments of Huffman-coded data allows distinguishing this

data from other high entropy objects such as random or

encrypted data. This can be very important for operational

computer forensics. (Techniques that might allow one to

distinguish between random data and encrypted data are

beyond the scope of this paper.)

Table 2 e The file types used to tune the JPEG
discriminator. Ground truth negative files were chosen
such that they contain no JPEG data, so container formats
such as PDF’s were excluded.

Type # 4KiB blocks % of Ground Truth

Ground truth negative

csv 826377 3.9

gif 728041 3.5

html 2789111 13.

log 1070871 5.1

mp3 107020 0.5

png 274013 1.3

rng 163840 0.8

text 12869592 61

wav 155561 0.74

xml 2129966 10.

Total 21114392 100.0

Ground truth positive

jpg 9055284 100.0

Fig. 5 e ROC plot for JPEG discrimination, varying High

Entropy (HE) and Low FF00 N-gram Count (LN). Decreasing

HE raises false positives. Increasing LN lowers true

positives.

Table 3 e Confusion matrix for the tuned JPEG identifier.
There were 30,169,676 total samples.

True Positive True Negative

Predicted Positive 8,950,321 113,757

Predicted Negative 104,963 21,000,635

Table 4 e Confusion matrix for the tuned MP3 identifier.
There were 801,076 total samples.

True Positive True Negative

Predicted Positive 635,738 1993

Predicted Negative 1498 161,847
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Wehavedevelopedanapproach fordistinguishingbetween

Huffman-coded data and random or encrypted data using an

autocorrelation test. Our theory is based on the idea that

Huffman-coded data contains repeated sequences of variable-

lengthbit strings. Someof these stringshave3bits, some4, and

so on. Presumably some strings of length 4 will be more

common than other strings of length 4. When a block of

encoded data is shifted and subtracted from itself, sometimes

the symbols of length 4 will line up.When they line up and the

autocorrelation is performed, the resulting buffer will bemore

likely to have bits that are 0s than bits that are 1s. Although the

effect will be slight, we suspected that it could be exploited.

As a result, we came up with this algorithm for a Huffman-

coded discriminator:

1. As with the JPEG and MPEG discriminators, we evaluate the

input buffer for high entropy. If it is not high entropy, it is

not compressed.

2. We perform an autocorrelation by rotating the input buffer

and performing a byte-by-byte subtraction on the original

buffer and the rotated buffer, producing a resultant auto-

correlation buffer.

3. We compute the vector cosine between the vector specified

by the histogram of the original buffer and the histogram of

each autocorrelation buffer. Vector cosines range between

0 and 1 and are a measure of similarity, with a value of 1.0

indicating perfect similarity. Our theory is that random

data will be similar following the autocorrelation, since the

autocorrelation of random data should be random, while

Huffman-coded data will be less similar following

autocorrelation.

4. We set a threshold value MCV (minimum cosine value); high-

entropy data that produces a cosine similarity value

between the original data and the autocorrelated data that

is less thanMCV is deemed to be non-randomand therefore

Huffman coded.

The number of histogram bins to compare is the second

tunable parameter.We call this valueVL (vector length). For each

VL, we chose theminimum cosine of the encrypted data as the

MCV, using a training set of 0.1% of our data. Ground truth

positivewas a set of large text and disk image files, compressed,

and negative was the compressed files AES-encrypted.We then

ran a grid search over the other 99.9% to determine which was

themost accurate for a particular block size.

Unlike the JPEG discriminator, this discriminator does not

need to be tuned for the block size. This discriminator also

improves with accuracy as the block size increases, as shown

in Table 5 and Table 6. This discriminator rarely mistakes

encrypted data for compressed data, and correctly identifies

approximately 49.5% and 66.6% of the compressed data with

4KiB and 16KiB block sizes, respectively. The low false positive

rate lets us estimate the amount of Huffman-coded data seen

in a random sample. We produce a rough estimate by taking

a randomly chosen distribution of 4KiB blocks andmultiplying

the percentage of identified compressed data by TPR�1.

4.4. Application to statistical sampling

Although fragment type identification was created to assist in

file carving and memory analysis, another use of this tech-

nology is to determine the content of a hard drive using

statistical sampling.

For example, if 100,000 sectors of a 1 TB hard drive are

randomly sampled and found to contain 10,000 sectors that

are fragments of JPEG files, 20,0000 sectors that are fragments

of MPEG files, and 70,000 sectors that are blank, then it can be

shown that the hard drive contains approximately 100 GB of

JPEG files, 200 GB of MPEG files, and the remaining 700 GB is

unwritten.

Fig. 1 shows the results of statistical sampling applied to

a 160 GB Apple iPod that we created using Apple’s iTunes,

iPhoto, and the popular TrueCrypt cryptographic file system.

First the iPod was zeroed using dd and new firmware was

loaded. Next the iPod was loaded with thousands of photo-

graphs and audio data. While it was loading the disk was

mounted using iTunes’ “Enable Disk Use” option and a 20 GB

TrueCrypt volume was created. This interspersed encrypted

data among the more commonly expected data.

The analysis of the Apple iPod is complicated by the fact

that the Apple iPod stores thumbnail images that are dis-

played on the screen in a proprietary non-JPEG file format

called a.ithmb file. We do not yet have a fragment recognizer

for this format. Nevertheless, we were able to accurately

determine the amount of JPEG and MPEG data, as well as the

free space.

5. Lessons learned

Research and development in small block forensics is

complicated by the large amount of data that must be pro-

cessed: a single 1 TB hard drive has 2 billion sectors; storing

the SHA1 codes for each of these sectors requires 40 GBdmore

storage than will fit in memory of all but today’s largest

computers. And since SHA1 codes are by design high entropy

and unpredictable, they are computationally expensive to

store and retrieve from a database. Given this, we wish to

share the following lessons:

Table 5 e Confusion matrix for the cosine-based
Huffman-coded data discriminator on 4KiB, using
VL [ 255. There were 3,569,107 total samples for 4KiB
blocks. Accuracy is 49.5%, TPR is 21.1%, and FPR is
0.0197%.

True Positive True Negative

Predicted Positive 482,015 95

Predicted Negative 1,802,869 1284,128

Table 6 e Confusion matrix for the cosine-based
Huffman-coded data discriminator on 16KiB, using
VL [ 250. There were 594,851 total samples for 16KiB
blocks. Accuracy is 66.6%, TPR is 48.0%, FPR is 0.450%.

True Positive True Negative

Predicted Positive 182,939 827

Predicted Negative 197,875 213,210
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1. We implemented frag_find in both Cþþ and Java. The Cþþ
implementation was approximately three times faster on

the same hardware. We determined that this speed is due

to the speed of the underlying cryptographic primitives.

2. Because it is rarely necessary to perform database JOINs

acrossmultiple hash codes, it is straightforward to improve

database performance splitting any table that references

SHA1s onto multiple servers. One approach is to use one

server for SHA1 codes that begin with hex 0, and one for

those beginning with hex 1, and so on, which provides for

automatic load balancing since hashcodes are pseudo-

random. Implementing this approach requires that each

SELECT be executed on all 16 servers and then the results

recombined (easily done with map/reduce). Storage

researchers call this approach prefix routing (Bakker et al.,

1993).

3. Bloom filters are a powerful tool to prefilter database

queries.

4. In a research environment it is dramatically easier to store

hash codes in a database coded as hexadecimal values. In

a production environment it makes sense to store hash

codes in binary since binary takes half the space. Base64

coding seems like a good compromise, but for some reason

this hasn’t caught on.

5. We have made significant use of the Cþþ STL map class.

For programs like frag_find we generally find that it is more

useful to have maps of vectors than to use the multimap

class. We suspect that it is also more efficient, but we

haven’t tested this.

6. Conclusions

This paper explores forensic analysis at the block and sector

level. Although this work is performed below the level of files,

we take the blocks of data analyzed to be representative of

filesdeither files that were once resident on the disk and have

now been partially overwritten, or else files that are still

resident on the disk but not necessarily in a sequence of

contiguous sectors.

We showed that there exist distinct data blocks that, if

found, indicate that the entire file from which the block was

extracted was once resident on themedia in question (Section

3). We showed how this notion of distinctiveness can be used

for hash-based carving (Section 3.7.1), for preprocessing a disk

image so that carvingwill bemore efficient (Section 3.7.2), and

for rapid drive analysis (Section 3.8).

We showed that it is possible to recognize a fragment of

a JPEG or MPEG file on a disk with extraordinarily high accu-

racy using an algorithm that has beenwrittenwith knowledge

of the underlying file format. We showed how to tune these

algorithms using the grid search technique. We then showed

that fragment type recognition can be used to rapidly deter-

mine the contents of a storage device using statistical

sampling.

6.1. Future work

The technique for discriminating encrypted data from

compressed data is in its infancy and needs refinement. More

generally, we are in need of more file fragment identifiers and

a larger database of distinct sector hashes.

Hash-based carving could be performed using a sector-

based similarity digest instead of a hash to search for similar

files.

Our approach of using grid search for finding optimal

tuning parameters is promising but needs refinement.

Specifically, an alternative tuning approach would be to

dispense with the ROC plots and simply use the combination

of tunable parameters that produce the highest F-score. Also,

it would be useful to re-run our grid search with tighter

bounds and a smaller step value to find improved values for

the tuning.

It may be possible to combine the recognition techniques

from our JPEG, MPEG and Huffman discriminators for

improved accuracy. For example, it may be possible to read

frames in the JPEG files. On the other hand, the JPEG andMPEG

discriminators are so accurate that there is little reason to

improve them further.

In the future, we hope to augment our random sampling

system with Andersen et al.’s FAWN-KV system (Andersen

et al., 2009).

Finally, wewill be producing a release of our discriminators

and discriminator evaluation toolbench written in C. The

software will be downloadable our website at https://domex.

nps.edu/deep/.
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