

File Fragment Classification—The Case for Specialized Approaches

 Vassil Roussev Simson L. Garfinkel
 Department of Computer Science Department of Computer Science
 University of New Orleans Naval Postgraduate School
 vassil@cs.uno.edu slgarfin@nps.edu

Abstract

Increasingly advances in file carving, memory analysis and network forensics requires the

ability to identify the underlying type of a file given only a file fragment. Work to date on this

problem has relied on identification of specific byte sequences in file headers and footers, and

the use of statistical analysis and machine learning algorithms taken from the middle of the

file. We argue that these approaches are fundamentally flawed because they fail to consider

the inherent internal structure in widely used file types such as PDF, DOC, and ZIP. We

support our argument with a bottom-up examination of some popular formats and an analysis

of TK PDF files. Based on our analysis, we argue that specialized methods targeted to each

specific file type will be necessary to make progress in this area.

1. Introduction

Most forensic practitioners can look at a piece of data, such as a disk block or a network
packet, and readily identify what kind of data it carries. This skill is important in many
forensic tasks, from diagnosing break-ins, making sense residual data, decoding memory
dumps, reverse-engineering malware, or simply trying to recover data from a crashed drive.

As investigations become increasingly complex, tools need the ability to perform file

fragment classification automatically—that is, to be able to infer the type of the file from
which the fragment was taken. For example, file carvers that perform fragment reassembly
need to be able to classify file fragments that they find on the drive, otherwise they suffer
from combinatorial explosion.

File fragment classification is complicated because there are many different kinds of file
types—from simple primitive types like a block of ASCII text or a JPEG file, to complex
container files such an Adobe Acrobat File (pdf), to archive files such as TAR and ZIP that
can themselves contain many other files (and even other archives). The problem is also
complicated by the fact that the phrase “file type” is itself not well defined.

This paper examines the file fragment classification problem. Section 2 presents a survey
of prior work. Section 3 restates the problem in a form that we believe to be more productive.
Section 4 explores the opportunity for specialized file fragment classification approaches.
Section 5 concludes.

2. Generic Approaches to Fragment Classification

Probably the most commonly used file identification program today is the Unix file
command and the “libmagic” library on which it relies [4]. This system works by comparing
specific regions of a file—typically the file’s beginning and head—with a database and
reporting the first match. The file command is reasonable accurate when given an entire file,
but it typically reports “ASCII text” or “data” when given file fragments.

Most work on file fragment identification to date has attempted to solve the classification
problem using a combination of machine learning techniques and statistical analysis.
Researchers typically assemble a corpus of files of different types. The corpus is divided into
two groups, a “training set” and a “test set.” The files in the training set are processed with
some sort of statistical technique and the results are fed into a traditional machine learning
algorithm. The results are used to create a classifier. The test set is then fed into the classifier
and its ability to classify is measured and finally reported.

2.1. Byte frequency distribution (BFD) approaches

McDaniel [1] appears to have been the first to consider the identification of file fragments
based on techniques other than header/footer analysis. His basic approach was to create for
each file a histogram of the frequency of ASCII code (0..255) in the file to be classified. This
histogram was turned into a 256-element vector; the vectors representing each file type were
then clustered. McDaniel’s corpus consisted of 120 files from 30 different file types; only
whole files were considered.

BFD-style analysis yielded rather unconvincing results: 27.50% true positive rate for the
BFA algorithm and 46% for the BFC algorithm. McDaniel then proposed an alternative
approach that created a file type fingerprint based on a correlation of byte positions and the
ASCII value at that position. This approach achieved a respectable 96% success rate—but
careful analysis shows that it was simply a variation on the traditional header/footer analysis
with the exception that the headers and footers were automatically learned. This approach
would not work for file fragment identification.

The next important piece of work belongs to Li [7] who substantially revamped the BFD
approach (referred to as 1-gram analysis). The basic idea is to use a centroid, or multiple
centroids, derived from the byte frequency distribution as the signature of a file type. But Li’s
published evaluation did not evaluate the approach on fragments drawn from the middle of a
file. Instead, the fragments all started at the beginning of the file with evaluation points at 20,
200, 500, 1000 bytes, as well as the whole file. Interestingly enough, the 20-byte fragments
were identified with near perfection, yet the accuracy of the same approach applied to entire
files drops significantly—down to 77% for whole jpeg files. This is obviously a paradoxical
result—using more data, Li got less accurate results. Since no confusion matrix was
published, the results are difficult to explain.

Karresand [6] developed a very similar centroid idea to Li’s and called it the Oscar
method. This was shortly extended [5] with the introduction of a new metric called rate-of-

change (RoC), which was defined as the difference of the ASCII values of consecutive bytes.
This was done squarely to improve the accuracy of jpeg recognition, which becomes near
perfect. That is not a surprise, as the jpeg format uses the 0xFF as an escape character for all
metadata tags. To avoid ambiguity and to simplify processing, the encoder stuffs an extra
0x00 after every 0xFF byte in the body of the file. This produces a very regular, unique, and
easily exploitable pattern—0xFF00—which has a very high RoC. Unfortunately, RoC does
nothing to improve the rather modest classification success of other file formats considered.
For Windows executables, the false positive rate actually exceeded the detection rate for
most points shown ([5] Fig 3), although the peak detection rate of 70% is equal to a
false positive rate of 70%. For zip files, things look a little better with false positive rate
of 70% when the detection rate reaches 100% ([5] Fig 4).

2.2. Metrics-based approaches

Erbacher argued that one could differentiate among the formats by taking a purely
statistical perspective of the file container by using standard statistical measurement—
averages, distributions, and higher momentum statistical measurements [13]. The argument

was made mostly by plotting the behavior of these measurements over several specific files,
which makes the differences apparent to a skilled observer. There was no actual method
described as to how exactly these observations fit into a workable classification system.

Follow-up work by Moody and Erbacher [10] attempted to flesh out such methodology
based on the observations. The researchers discovered that a metrics-based approach can help
distinguish some broad classes of file data, such as textual, executables, and compressed, but
becomes easily confused in trying to pick out more subtle differences—csv vs. html vs. txt.
For those, they used secondary analysis to make a better distinction with mixed results.

Veenman [16] combined the BFD with Shannon entropy and Kolmogorov complexity
measures as the basis for his classification approach. To his credit, he used a sizeable
(450MB) evaluation corpus, employed 11 different file formats, and his formulation of the
problem—identify the container format for a 4,096 byte fragment—was the closest to our
view of how the analysis should be performed. The classification success for most was quite
modest: between 18% for zip and 78% for executables. The only standouts were html with
99% and jpg with 98% recognition rates.

Calhoun [3] expanded upon Veenman’s work by employing a set of additional measures
(16 total) and combinations of them. While the test sets were rather small—50 fragment per
file type—he recognized the need for more subtle testing and performed all-pairs comparison
of three compressed formats: jpg, gif, and pdf. Another positive in this work is that header
data was not considered so the results are not skewed by the presence of metadata.

The improved evaluation methodology (with the notable exception of sample size)
provides one of the first realistic evaluations of generic metrics-based approaches. Provided
true positive rates for the binary classification are between 60% and 86% for the different
metrics, implying false positives in the 14 to 40% range.

2.3. Discussion

Researchers are trained to pursue generalized solutions whenever possible. Researchers are
also taught that “reinventing the wheel” is generally a mistake. Thus, it is quite
understandable that researchers exploring the file identification problem would seek out a
generalized solution that would work on any file type by borrowing classification
methodologies that have worked with spectacular success in other areas.

Before applying a technique from one field to another, it is useful to carefully examine the
techniques’ underlying assumptions to make sure that they will still apply. The data
networking community provides us with a cautionary tale. Before Leland’s 1993 seminal
paper [17] on the self-similarity of network traffic, practically all research in that area
assumed that network traffic followed a Poisson distribution. This assumption led to beautiful
models that were analytically very tractable, and were a natural extension of prior work on
phone networks. The only problem was that the underlying assumptions were not valid; more
than a decade of research had to be written off as useless in the real world.

The prevalent research approach to the file fragment classification problem to date has
been based on statistical and machine learning methods. Purely statistical approaches rely on
experimentally established thresholds to make decisions: for example, if the fraction of
printable characters is above a certain value, it is likely that this is a text file. Machine
learning techniques try to be a little more generic by incorporating a number of measurements
and letting the algorithm determine the weights through training. Both approaches are
evaluated by supplying known data that was not part of the training set to calculate basic
statistics like true and false positives.

Clearly, both approaches are critically dependent on the composition and size of the sets
used for evaluation (and, in the case of ML approach, training). If these sets are not

representative of what an investigator is encountering, then the results are not predictive.
Because the authors of each paper we reviewed use different corpora for their evaluation—
sometimes with sizes differing by 2 orders of magnitude—it makes no sense to compare these
published results in an attempt to determine which approach is “better.”

More importantly, for any generic technique to work, the encoded data must exhibit
discernable patterns. Unlike other ML application areas such as biology, physics, and
chemistry, where physical phenomena leave fingerprints in the censor data, files are synthetic
objects: there are no guarantees that any reliable patterns will ‘naturally’ emerge unless the
files have been specifically designed that way. In fact, two popular transformations—
compression and encryption—result in the removal of any persistent patterns in the coded
stream. In both of these cases, any patterns present in the stream indicate some kind of
process failure: a compressed file with patterns could be compressed further, while an
encrypted file with patterns is subject to cryptanalysis. Thus it is highly unlikely that a naïve
ML approach could identify any type of file or distinguish one from the other.

3. Reconsidering File Fragment Classification

All of the papers presented in Section 2 assumed that each file or file fragment actually had
a specific type—some kind of ground truth that could be used for training or evaluation. In
our reading of these papers the term file type was used synonymously with the phrase file

extension. Before going further, it is worth stepping back and examining what precisely what
files are and whether or not they have types.

3.1. What is a ‘file type’?

For this work, we consider a file to be a sequence of bytes that are stored by a file system
under a user-specified name. Generally the file system views files as opaque objects that are
created, interpreted and modified by applications on behalf of end users.

Operating systems generally avoid interpreting the names and contents of files, although
there are exceptions. Many determine how an executable file will be executed based on the
file’s name and the first few bytes that the file contains. CP/M and MS-DOS will load any file
with extension .COM into memory and execute it if the file’s name is typed. Windows marks
the beginning of executables with an “MZ”. Unix marks the beginning of a.out and ELF files
with a different header; if the first two bytes of a file are “#!” then the file is treated as a set of
commands to be fed into the program whose name follows the exclamation mark.

Application programs are a different matter. By the 1980s most microcomputers were
being purchased by businesses and home users to run specific applications—typically word
processors and spread sheets. These programs invariably stored their data in proprietary
binary files; sometimes these files could be read by competing programs with varying
amounts of fidelity, other times they could not.

As graphical user interfaces became the norm, it became very useful to associate a file
types with the corresponding applications so that basic actions like ‘open’ and ‘print’ could be
initiated by the user from the graphical shell, rather than from within a specific application.
DOS and Windows shells created this association through the file’s extension. This loose
association between file naming conventions and application actions is what the operating
system presents to end-users as a ‘file type.’

Now, consider the binary application-specific files from the application’s point of view.
The sole purpose of the byte streams is to store application state across user sessions. To
achieve this, the application developer needed some way to serialize and then deserialize the
application’s state. Frequently, files were simply a dump of the application’s memory,
although later versions of an application needed the ability to read files created by earlier

versions. To distinguish one version from another, some programmers started data files with a
header containing a flag and perhaps a version number.

Logically, the serialized data can be split into two parts—actual data, and structural
metadata. The amount of metadata can vary significantly across file formats—text files may
have little or none, whereas MS Office documents (such as doc and xls) are, in fact, small file
systems [7]. Over time, we have developed a good number of standardized data
representations and those are being shared in significant ways across file formats. This is
particularly true of archive and compression formats, as they are rather expensive to code and
debug from scratch, and are surrounded by numerous patent and copyright restrictions.

3.2. What is file fragment classification?

We are now able to present our definition of file fragment classification. Given a
contiguous piece of data (a fragment), the classification is the encoding format of the file
from which the fragment was taken. This is different from the problem from the file fragment
identification, in which we try to find the specific file from which the fragment was extracted.
File fragment classification and identification are related problems, but solutions to these two
problems tend to be quite different.

3.3. What is a pdf file?

To keep the discussion grounded, we will consider one of the prevalent file formats—
pdf—and try to identify what distinguishes it from other formats. For this purpose we did a
survey of over 131,000 valid pdf files, obtained from a search engine using random keywords.
The overall size of the data set is 85 GB.

At a high level, the structure of a pdf file is relatively simple—the bulk of the data consists
of a number of autonomous objects encoding text and images in various formats. Those are
held together by font, layout, formatting, and other information. Figure 1 shows a snippet
from a pdf file in a hex editor as an illustration. The highlighted data encodes a compressed
block of text of 151 bytes using the standard deflate algorithm and zlib storage format (RFC
1950[11] /1951[12]).

Even at first glance, it is clear that pdf metadata that encapsulates the compressed
data blocks is ASCII-encoded and can be readily parsed and identified. Taking
advantage of this feature, we were able to produce a breakdown of various types of data
objects and their volume relative to overall file size. Table 1 shows the results.

Figure 1 Partial view of a pdf file in a hex editor

Table 1 Structural composition of pdf files

The first column identifies the encoding method for the object; the rest identify the total
number of embedded objects of the particular category, average size, absolute total size, and
the relative fraction of the total amount of data, respectively. The main point here is that all
the encoded objects with the exception of the ones labeled PDF-identifying can be
encountered as part of non-PDF objects. In other words,

 Deflate encoding represents compressed text using RFC 1950/1951; image encoding
includes JPEG and JPEG2000 objects; BW image includes CCITFax-encoded and JBIG2-
encoded bi-tonal images; application/xml/form represents data included as application
tags; ASCII85 is a text transcoding scheme, which is designed to communicate binary data
using only human-readable characters and typically used in combination with compression
encodings; LZW [18] is a dictionary compression scheme, best known for its use by the Unix
compress utility; fonts represents embedded fonts. The PDF-characteristic data is simply the
leftover after we’ve accounted for all the possible encodings that are shared with other
formats.

Returning to our problem of identifying the encoding format of a fragment, consider the
case of classifying an excerpt of 512 to 4,096 bytes (which covers the most interesting cases).
We can immediately notice that, most of time, we have no way of knowing that the excerpt is
part of a pdf file. Sometimes the fragment will be indistinguishable from a standalone JPEG
file; other times it will be indistinguishable from any number of standalone files using the
deflate method—including png, zip, and swf, to name a few; in fact, every single encoding on
the list is shared with other file formats and applications. Consequently, we can only classify
a fragment as part of a pdf if it contains some metadata that is characteristic of PDF files—the
character sequence “obj<</”, for example.

We have focused here on PDF files, but the same is true of Microsoft Office files. As
mentioned above, Microsoft’s older doc, xls and ppt files resemble small file systems with
embedded objects represented as streams. Microsoft’s newer docx, xlsx and pptx files are
actually zip archives where the embedded components are literally stand-alone primitive files.
Typically these files are not compressed [14].

Clearly, characteristic metadata is required to identify a fragment from any compound file
format. Otherwise technique can only possibly identify the embedded object.

3.4. Asking the right questions

From the discussion so far, it should be quite clear that the general problem of file
fragment classification would be better formulated as two separate questions:

Encoding Count Avg Size(KB) Total (MB) %

Deflate 10,406,780 4.11 41,730 49.1%

Image (jpeg/jpeg2000) 853,321 25.88 21,570 25.4%

BW Image (fax/JBIG2) 756,532 12.82 9,470 11.2%

PDF-Characteristic 8,236 9.7%

Application/XML/Form 520,220 3.18 1,614 1.9%

ASCII85/ASCIIHex 205,421 4.51 905 1.1%

LZW/RunLength 64,911 7.70 488 0.6%

Fonts 10,005 1.14 11 0.0%

Other 412,570 2.23 899 1.1%

Grand Total 13,229,760 6.57 84,921 100.0%

• What is the primitive data format of the fragment?

• Is the fragment part of a compound file structure?

Combining the two questions, as others have done, leads to an ill-defined problem for all
compound document formats. To illustrate, assume that method A can correctly classify pdf
fragments of 1,024 bytes in size 80% of the time and misclassifies them as jpeg pieces 15%
of the time. Is this a good method to adopt, or not? The correct answer is that we simply
do not know. On the positive side, maybe the method only gets confused when the
fragment is entirely jpeg-encoded so the 15% confusion is just bad reporting on part of
the author and should be added to the 80% true positives. On the other hand, if the
sample evaluation set were heavily text-based with many zlib-encoded parts, this would
be a rather poor method as it is relatively easy to separate jpeg- and zlib-coded streams.
Finally, how will the method perform if we encounter a group of fax-encoded scanned
documents? We have no basis to expect any particular performance for any of these
cases because the experimental methodology was not designed to address them.

Restating the fragment classification problem as two separate questions points to
both the correct way to approach it and to a much more rigorous and informative
evaluation framework. Given a fragment, a classification method should be able to
detect evidence of known primitive encoding formats, such as jpeg, as well as evidence
of compound format metadata (e.g. pdf). If it is determined that the fragment contains
only bytes associated with a primitive type, then the method should classify the
fragment accordingly and state that it has found no evidence that the primitive type is
inside a container. Conversely, if the fragment contains evidence of a file container or a
compound document, that should be stated.

It is also useful to score methods on two scales—the ability to identify primitive
types, and ability to identify compound formats. For primitive types we can measure the
size of a fragment vs. correct classification. Separately, we can measure the
effectiveness of classification with and without header information. For compound
formats, any method would have to rely on structural metadata outside the primitive
objects: otherwise the method becomes less accurate as the embedded objects grow in
size! Instead, it would be better to compare the amount of metadata contained in the
fragment vs. its ability to identify the compound format—a method requiring less
metadata would obviously be superior, as it will classify more fragments correctly.

Classification methods should also be able to state ‘I don’t know’ when the data
exceeds their abilities. From a practical perspective, having a method that has 60% true
positive rate, 0% false positive, and 40% unclassified is much more useful than a
method that has 80% true positive and 20% false positive rate. This is especially true
for large cases—with the former we can conclusively deal with 60% of the objects and
try alternative approaches on the remainder, whereas with the latter method, we are
running a gamble so we cannot reliably eliminate anything from consideration.

4. Specialized Approaches to Fragment Classification

We define a specialized method for fragment classification as one designed to
correctly identify whether or not the fragment belongs to a particular encoding format
as opposed to all other formats. Such classifiers rely on the most specific information
available about the format and typically employ minimal raw data parsing and focused
statistics to achieve their goal. The more general problem of classifying the fragment is
solved by cross-correlating the results from the binary classifiers. Such results may be
in conflict, in which case the method should flag the discrepancy or refuse to classify
the fragment.

4.1. Primary goals

We advocate a practical, minimalistic, and conservative approach that strives to be quick
and efficient and openly informs the user of its own limitations:

• Accuracy. As with any classification scheme, we are interested in the best possible
detection rate. It is important to recognize that with terabyte-scale targets, we need very
high classification rates—upwards of 99%—to make a difference.

• Reliable error rate estimates. Every classifier should have well-studied error rates based
on large and representative studies, preferably on a standardized, public data set.

• Clear results. Methods should strive to have no false positive/false negative rates. It is
preferable for a method to return ‘unable to classify’ then to risk false results. This is a
practical consideration as it allows an investigation to quickly eliminate data from
consideration—uncertainty is not helpful in this context.

• Line-speed performance. Methods should be fast enough to keep up with bulk I/O
transfer from secondary storage. This simple requirement allows us to easily scale up the
classification in response to continuous growth of parallelism on commodity hardware.

4.2. Compressed data case study: zlib

To illustrate the difficulties in dealing with compressed data objects, we present a brief
study of the zlib data format, which is employed by popular formats such as pdf, zip, cab, gz,

bz2, zip, png, jar, and swf. This is an example of a format that entirely focuses on storage
efficiency and contains the minimal of metadata necessary for decoding. The zlib/deflate
bitstream consist of a sequence of compressed blocks. Each of the blocks consists of:

• 3-bit header—the first bit indicates whether this is the last block in the sequence; the
following two bits define how the data is coded: raw (uncompressed), static Huffman, or
dynamic Huffman.

• If the data is compressed with static Huffman, the decoder uses a default coding table; if
dynamic is chosen, the coding table immediately follows (in compressed form).

• The table is followed by a bitstream of variable-length Huffman codes that represent the
content of the block. One of the codes is reserved for marking the end of the block.

Note that there is no break in the bitstream between blocks—as soon as the end-of-block
code is read from the stream, the next bit is the beginning of the following block header. Note
also that the actual end-of-block code depends on the coding table for the block and is not
fixed. In other words there is no synchronization information of any kind—if a decoder were
to miss a single bit, there is no opportunity to recover from that error. Worse yet, due to the
properties of variable-length codes, the decoder will likely continue to work, producing
garbage output potentially through the end of the bitstream.

We already know that statistical variation of the coded stream is quite uniformly random
[2]. The lack of synchronization information is very bad news from a forensic perspective. To
illustrate the point, we conducted a study of 1,317 gz files (414 MB) downloaded from a
search engine using random keywords. We instrumented a version of pyflate [15] to
empirically answer some basic questions of forensic interest about zlib streams.

• How likely is that a compressed block will use the default Huffman table? If the static
Huffman option is the norm, then we could try to decode streams using the default table
and that could give us an opening for further analysis.

Based on our sample, that probability is in the order of 0.1% as only 14 out of 13,711
blocks were statically coded. 99.5% of all the blocks (13,638 out of 13,711) in the sample
were coded using dynamic Huffman tables, and 0.4% of the blocks were uncompressed. The

coding tables also turn out to be very different from each other with 99.8% of them being
unique. In short, we have virtually no hope of guessing the correct Huffman decoder.

• How likely is that the incorrect decoder will decode a zlib fragment? If incorrect decoders
were to fail quickly, that could help us classify the source of a fragment.

To answer this question, from each file we picked one decoder and tried to decode 4,096
bytes from each of the other files, starting at a random position (almost all Huffman codes are
self-synchronizing [2] so the actual starting point makes little difference). We were successful
on all but one occasion. In fact, we fed the decoders random data blocks and none of them
crashed. We also examined how quickly different decoders synchronize and saw no statistical
deviations that would allows us to pick the correct one.

In summary, it appears to be very difficult to distinguish a compressed data object, which
contains no synchronization information, from random data, or from encrypted data. By
extension, machine learning or statistical methods that have been applied to file fragment
classification to date simply have no discernable patterns to exploit.

4.3. Compressed data case study: jpeg

As mentioned, the jpeg format has some nice features as far as fragment classification is
concerned. We split the concerns of detecting the jpeg header from the detection of the
encoded image. The header has a simple record structure where the beginning of each record
is announced by the presence of a marker—a 16-bit number in the 0xFFC0 to 0xFFFE range,
which is followed by a 16-bit number describing the length of the record. The exact meaning
of the records is irrelevant here—all we need to do is skip from record to record until we find
the 0xFFDA tag (‘start of scan’), which marks the beginning of the encoded image.

The minimum valid beginning (magic number) of a valid jpeg is thus 0xFFD8FF. What we
wanted to test is—what is the probability that such a header-scanning approach would
wrongfully identify a piece of data as a jpeg image header. We ran the test against several
randomly obtained sets: 4,000 pdf files (2,150MB), 4,000 doc files (955MB), 1,300 xls files
(307MB), and 1,300 gz files (414MB). In each case, after a valid header was discovered, we
simply carved out all the data from the beginning until the 0xFFD9 marker and asked the
operating system to show thumbnail images as proof that valid images were obtained. We
found no false positives at all.

In our analysis we found that the average distance between two occurrences of 0xFF00 in
a jpeg file was 191 bytes. This is considerably more frequent than it would be under
uniformly random distribution but so frequent that it’s presence would be exploited by typical
machine learning techniques.

Although we have termed jpeg a “primitive” file type in this paper, it is actually a
container file format. Certain products, such as Adobe Photoshop, have a propensity of using
jpeg’s allowance for ‘application segments’ rather heavily. Using this feature, one could
embed any kind of data, which could create problems during data recovery. We found, for
example, in a small 20KB image another version of the image in the header, which appeared
to be of higher quality. There are usually non-trivial amounts of metadata as well.

The next problem is to identify the jpeg body of the image. It is fairly straightforward to
identify compressed/encrypted data using some basic entropy measurements. The true task is
to differentiate among different compressed streams. Apart from zlib, most compressed
formats do have some synchronization information—this is almost universally true for
multimedia formats as they need to support fast seek operations.

For this experiment, we focus on differentiating between jpeg and zlib. We mentioned
earlier that, in the body of the image, jpeg encoders stuff a 0x00 byte after every 0xFF. In
addition to that, there are a few more legal markers that may appear—mostly in the 0xD0 to

0xDB range. In this experiment, we ask the question: given a fragment of size
512/1,500/4,096 bytes, what is the probability that a non-jpeg fragment will be
indistinguishable from a jpeg one based on the above rule? In other words, we assume that the
fragment is jpeg and we are looking for evidence to disprove the hypothesis. To do so, all we
need is one instance of an illegal two-byte sequence that starts with 0xFF.

Figure 2 shows the empirical cumulative distribution function of the distance between two
consecutive instances as determined by our gz test set. For our specific points of interest, we
find out that the probability that the distance between two instances will not exceed
512/1,500/4,096 bytes and, therefore, will provide us with definitive evidence is 83.41%,
98.5%, and 99.97%, respectively.

Figure 2 Empirical CDF of the distance between two non-JPEG instances: gz files

4.4. Compressed data case study: mp3

mp3 is another format that is classification-friendly and is representative of a broader class
of multimedia containers. The main insights come, again, from the ultimate source—the
format specification. An mp3 file consists of a sequence of mp3 frames that are completely
self-contained and do not depend in any way on the ones before, or after. The beginning of
the frame is marked by 12 consecutive 1 bits that are certain not to appear anywhere else in
the encoded stream. Following the synchronization bits is information about the version, bit
rate, sample rate, and padding. Based on these parameters we can calculate the length of the
frame and predict the appearance of the next header.

There are several criteria that allows us affirm, or reject the fragment as mp3-encoded.
First, the predictable appearance of the frame header—for a fixed-rate encoding this will be
almost periodic (for the typical 44.1KHz sampling rate a padding byte is necessary every
once in a while). Next, not all combinations of parameters in the frame header are legal, and
even fewer are actually seen in the wild. Consecutive frames may be encoded at different bit
rate but little else changes from frame to frame. Finally, if we find the synchronization bits

Cumulative Distribution: Non-JPEG 2-grams in gz Files

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2
5
2

1
0
2

1
5
2

2
0
2

2
5
2

3
0
2

3
5
2

4
0
2

4
5
2

5
0
2

5
5
2

6
0
2

6
5
2

7
0
2

7
5
2

8
0
2

8
5
2

9
0
2

9
5
2

1
0
0
2

1
0
5
2

1
1
0
2

1
1
5
2

1
2
0
2

1
2
5
2

1
3
0
2

1
3
5
2

1
4
0
2

1
4
5
2

1
5
0
2

Distance b/w samples

P
ro

b
a
b

il
it

y

out of place, we can easily disqualify the fragment. It would not be difficult to perform a
quantitative study similar to the one from the previous section to see what is the probability
that a non-mp3 fragment will not deliver rejection proof.

We performed an exhaustive study using the 1,500 and 4,096 fragment sizes and found
that the above criteria did not select a single false positive among our doc, xls, pdf, jpg, and gz
sets. We did not study the 512 byte case because we needed to ensure that at least two frame
headers are present in the fragment.

As further proof, we created a tool called mp3scalpel and used it to extract all the mp3

fragments from the DFRWS 2006 Challenge [1], which contained numerous non-trivial
fragmentation scenarios among several different data formats. With some additional work we
were able to automatically reconstruct all the available audio from the challenge.

4.5. Compound document detection

It is a highly desirable to be able to detect not only that a fragment contains part of a
compressed object but is also part of a compound file container. We should again emphasize
that this determination is not always feasible—we need some data outside the embedded
object to appreciate the fact that it is embedded. How much do we really need?

As it turns out, for the pdf format the answer seems to be very little as pdf rather clearly
marks all embedded objects. The beginning of an embedding is preceeded by the string
‘>>stream’ followed by an end-of-line marker, where as the end is marked by
‘endstream’ and another end-of-line marker. In our test set we gradually reduced the
number of characters to five for both the beginning and the end and encountered no false
positives when tested against the rest of the compound files—doc and xls.

In contrast, we found no reliable patterns that precede embedded jpegs in doc containers.
This is not surprising since these are not organized as records but are similar to the FAT file
system [9]. Therefore, there is no reason to expect that such information will be in close
proximity to the actual embedded object.

4.6. Summary

In this section, we presented a number of specialized classification techniques that are
targeted at specific data formats. Our goal was not to claim groundbreaking discoveries but to
illustrate that it is possible to produce very reliable fragment classification results if one is
willing to read the standards, examine files by hand, and create hand-crafted recognizers.

All of the presented techniques fit our requirement in terms of accuracy, error estimates,
clarity, and performance. Our bottom up analysis shows also that many of the artifacts that we
use in the analysis a very particular to individual formats so it is extremely unlikely that some
generic framework will cover all of them.

Much of the information we used is part of standards specifications and has be been used
in many applications, such as file carving. However, no prior work has provided any error
estimates on the reliability of such methods.

5. Conclusions and Future Work

The goal of this work was to help advance and focus the research effort in the area of file
fragment classification. Specifically, we make the following main contributions:

• We critically examined the state of research efforts in the area over the last nine years and
evaluated them both in terms of end results and research methodology.

• We performed a bottom up analysis by starting with the details of how some popular
formats are structured. We reached the conclusion that the methods currently applied are
highly unlikely to be successful because they rely on easily detectable patterns.

• We found that the current evaluation efforts are inadequate in at least two respects—they
do not employ enough sample data and fail to make the distinction between primitive
types and compound data formats. The latter problem has major implications regarding
the execution of evaluation studies and the presentation of their results in proper context.

• We argued that efforts need to be focused on developing specialized classification
methods as the only way to produce practical tools. This may not have the same research
elegance but yields results that are much closer to what is needed. In retrospect, most
successful methods to date were specialized and worked only on certain data.

• We demonstrated that using specialized methods does not relieve us from the need to be
critical and to quantify the effectiveness of each one based on representative studies.

In the near future, we plan to present to the community a set of corpora that researchers can
adopt and use for standardized testing and evaluation. This will finally permit both head-to-
head evaluation and absolute performance evaluation based on the ground truth.

5. References
[1] B. Carrier, E.Casey, W.Venema, DFRWS Forensic Challenge. http://dfrws.org/2006/challenge/. 2006.
[2] C. Freiling, D. Jungreis, F. Théberge, K. Zeger. “Almost all complete binary prefix codes have a self-

synchronizing string.” IEEE Transactions on Information Theory. Vol 49(9), Sep 2003, pp. 2219-2225.
[3] Calhoun WC, Coles D. “Predicting the types of file fragments.” Proceedings of the 2008 DFRWS

Conference, Baltimore, MD. Aug 2008. pp.146-157.
[4] I. F. Darwin, “Libmagic,”. ftp://ftp.astron.com/pub/file. 2008
[5] Karresand M, Shahmehri N. “File Type Identification of Data Fragments by Their Binary Structure”,

Proceedings of the 7th Annual IEEE Information Assurance Workshop, "The West Point Workshop", pp 140-
147, United States Military Academy, West Point, 21-23, New York, June 2006.

[6] Karresand M, Shahmehri N. “Oscar—file type identification of binary data in disk clusters and RAM pages,”
in Proceedings of IFIP International Information Security Conference: Security and Privacy in Dynamic
Environments (SEC2006), LNCS, p413-424. 2006.

[7] Li WJ, Wang K, Stolfo SJ, Herzog B. “Fileprints: identifying file types by n-gram analysis”. 6th IEEE
Information Assurance Workshop, West Point, NY, June, 2005.

[8] McDaniel M, Heydari MH. “Content Based File Type Detection Algorithms.” HICSS '03: Proceedings of the
36th Annual Hawaii International Conference on System Sciences (HICSS'03). 2003.

[9] Microsoft, “Windows Compound Binary File Format Specification,” 2007.
[10] Moody SJ, Erbacher RF. SÁDI - Statistical Analysis for Data Type Identification. May 2008. Proceedings of

the 3rd IEEE International Workshop on Systematic Approaches to Digital Forensic Engineering, Oakland,
CA, May 2008, pp. 41-54.

[11] P. Deutsch, J-L. Gailly. RFC 1950: “ZLIB Compressed Data Format Specification version 3.3”.
http://www.ietf.org/rfc/rfc1950.txt. 1996.

[12] P. Deutsch. RFC 1951: “DEFLATE Compressed Data Format Specification version 1.3”.
http://www.ietf.org/rfc/rfc1951.txt. 1996.

[13] R. Erbacher, J. Mulholland, "Identification and Localization of Data Types within Large-Scale File Systems,"
Proceedings of the 2nd International Workshop on Systematic Approaches to Digital Forensic Engineering,
Seattle, WA, April 2007, pp. 55-70.

[14] S. Garfinkel, J. Migletz, “The new XML Office Document Files,” IEEE Security & Privacy Magazine,
March/April 2009.

[15] Sladen, P., pyflate. http://www.paul.sladen.org/projects/pyflate/
[16] Veenman CJ. Statistical Disk Cluster Classification for File Carving. Proceedings of the First International

Workshop on Computational Forensics, Manchester, UK, August 31, 2007.
[17] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. “On the self-similar nature of ethernet traffic.” In Proc.

ACM SIGCOMM '93, pages 183—193, 1993.
[18] Welch, T. A. "A technique for high-performance data compression." Computer. Vol. 17, June 1984. pp. 8-19.

