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D igital forensic analysis aims to reconstruct 
a chain of events that have resulted in the 
current observable state of a computer sys-
tem or digital artifact. Generally, an inves-

tigation involves answering four questions:

What happened?•	
When did it happen?•	
How did it happen?•	
Who did it?•	

With the persistent societal trend of digitizing all 
information, such analysis is becoming increasingly 
critical in investigating the entire range of illegal ac-
tivities, from minor infractions to capital cases.

In computer security, forensic analysis—also called 
incident response in this context—is the first step in 
identifying, understanding, and mitigating security 
breaches. In the corporate environment, most aspects 
of the business already depend heavily on massive 
computer systems, and the capability to examine them 
forensically in a timely fashion has become essential. 
According to the Computer Security Institute, insider 
abuse of Internet access has eclipsed virus attacks as 
the number one computer security concern, with 59 
percent of companies reporting such incidents.1 In-
sider threats pose significant privacy concerns, such 
as leaks of sensitive information (both accidental and 
malicious), and expose companies to liabilities from 
employee misuse of the IT infrastructure. In all cases, 
response time is critical.

To quickly and efficiently screen data, forensic ex-
aminers rely heavily on hash-based techniques. Recent 

research has considerably expanded 
the range of such techniques to in-
clude adaptations of data-fingerprinting methods from 
other domains. Here, we describe the driving problems 
that motivate R&D in this area, and survey both estab-
lished practices and recent research advances.

The Problem of Scale
One of the biggest obstacles to rapid response in digital 
forensics is scale. As the generation of digital content 
continues to increase, so does the amount of data that 
ends up in the forensic lab. According to US Federal 
Bureau of Investigation (FBI) statistics, the average 
amount of data examined per criminal case has been 
increasing by 35 percent annually—from 83 Gbytes in 
2003 to 277 Gbytes in 2007.2 However, this is just the 
tip of the iceberg—the vast majority of forensic analy-
ses support either civil cases or internal investigations 
and can easily involve terabyte-scale data sets.

Ultimately, a tiny fraction of that information 
ends up being relevant—the proverbial needle in a 
haystack. So, there’s a pressing need for fast, efficient 
methods that can focus an inquiry by eliminating 
known content that’s irrelevant and by pinpointing 
content of interest on the basis of prior knowledge. As 
an illustration of the problem’s difficulty, consider the 
2002 US Department of Defense investigation into a 
leaked memo detailing Iraq war plans. According to 
Computerworld Australia, authorities seized 60 Tbytes 
of data in an attempt to identify the source.3 Several 
months later, the investigation closed with no results. 
Another widely publicized example, the Enron case, 
involved more than 30 Tbytes of raw data and took 

Hashing is a primary, yet underappreciated, tool in digital 

forensic investigations. Recent R&D has demonstrated 

that, with clever design, we can construct robust 

fingerprinting and similarity hashes that can significantly 

speed up an investigation.
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many months to complete.4 Although these examples 
might seem exceptional, it isn’t difficult to envision 
similar, plausible scenarios in a corporate environ-
ment involving large amounts of data. As media ca-
pacity continues to double every two years, huge data 
sets will increasingly be the norm.

Finding Known Objects:  
Basic Hashing
The first tool of choice in investigating large volumes 
of data is hashing—it’s routinely used to validate data 
integrity and identify known content. At a basic level, 
hash-based methods are attractive because of their 
high throughput and memory efficiency. A hash func-
tion takes an arbitrary string of binary data and pro-
duces a number, often called a digest, in a predefined 
range. Ideally, given a set of different inputs, the hash 
function will map them to different outputs.

Intuitively, a hash function is collision resistant if find-
ing two different inputs with the same output is com-
putationally infeasible. Cryptographic hash functions, 
such as MD5, RIPEMD-160, SHA-1, SHA-256, and 
SHA-512, are explicitly designed to be collision re-
sistant and to produce large, 128- to 512-bit results. 
Because the probability that two different data objects 
will produce the same digest by chance is astronomi-
cally small, we can assume that two objects having the 
same digest are identical. Another way to look at this 
property is that we have a compression mechanism by 
which we can generate a unique, fixed-size represen-
tation for data objects of any size. Clearly, this is an 
irreversible computation because we can’t recover the 
original object from the digest.

Researchers have developed many other hashing 
algorithms, such as checksums, polynomial hashes, 
and universal hashes, but these have mostly found 
limited use in digital forensics. The main reason is 
that cryptographic hash functions are quite afford-
able on modern hardware—a good workstation can 
easily sustain bulk MD5 hashing (the most popular 
choice) at 400 Mbytes per second on a single core, 
whereas large commodity hard drives—the source of 
all data—are limited to approximately 100 Mbytes/s. 
Other classes of hash functions are either slower to 
compute or provide less collision resistance, so there’s 
little incentive to use them.

The state of the practice is to apply a cryptographic 
hash function, typically MD5 or SHA-1, to either the 
entire target (drive, partition, and so on) or individual 
files. The former approach validates the forensic tar-
get’s integrity by comparing before-and-after results 
at important points in the investigation. The latter 
method eliminates known files, such as OS and ap-
plication installations, or identifies known files of in-
terest, such as illegal ones. The US National Institute 
of Standards and Technology (NIST) maintains the 

National Software Reference Library (NSRL; www.
nsrl.nist.gov), which covers most common OS instal-
lation and application packages. Similarly, commercial 
vendors of digital forensics tools provide additional 
hash sets of other known data.

From a performance perspective, hash-based file 
filtering is attractive—using a 20-byte SHA-1 hash, 
we could represent 50 million files in 1 Gbyte. So, we 
could easily load a reference set of that size in main 
memory and filter out, on the fly, any known files in 
the set as we read the data from a forensic target.

Besides whole files, we’re often interested in dis-
covering file remnants, such as the ones produced 
when a file is marked as deleted and subsequently par-
tially overwritten. A common method to address this 
problem is to increase the hashes’ granularity—we can 
split the files into fixed-size blocks and remember each 
block’s hashes. Once we have a block-based reference 
set, we can view a forensic target as merely a sequence 
of blocks that can be read sequentially, hashed, and 
compared to the reference set. Typically, the block 
size is 4 Kbytes to match the minimum allocation 
unit used by most OS installations. This scheme has 
two main advantages: we can easily identify pieces of 
known files and avoid reading the target hard drive 
on a file-by-file basis. (File-based data access tends to 
generate a nonsequential disk access pattern, which 
can seriously degrade throughput.)

Efficient Hash Set Representation: 
Bloom Filters
Faced with a large reference hash set, a forensic tool 
needs an efficient mechanism to store and query it. 
Most tools sort the hashes, lay them out sequentially 
in memory, and query them using binary search. To 
facilitate this process, NSRL and other reference sets 
are already sorted. Although this organization isn’t 
unreasonable, as the set’s size grows, the query mecha-
nism’s performance degrades substantially, regardless 
of the host machine’s computational capabilities. For 
example, for every query in a set of 50 million refer-
ence hashes, we would expect approximately 26 main 
memory accesses, each of which will cause a delay of 
tens of CPU cycles. (Owing to the randomized pattern 
in which the referenced set is accessed, cache benefits 
would be marginal.) Obviously, such a memory-con-
strained workload severely underutilizes the CPU.

One promising approach to speed up lookup opera-
tions and to reduce space requirements is Bloom filters. 
First introduced by Burton Bloom,5 they’re widely used 
in areas such as network routing and traffic filtering. A 
Bloom filter is simply a bit vector of size m, with all bits 
initially set to zero. The basic idea is to represent each 
element of the set as a  (hopefully) unique combination 
of k bit locations. For that purpose, we need a set of k 
independent hash functions, h1, …, hk, that produce 
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values in the range of 0 to m – 1. To insert an element 
(a binary string) S1, we apply each hash function to it, 
which gives us k values. For each value—h1(S1), …, 
hk(S1)—we set the bit with the corresponding num-
ber to one (setting a bit twice has the same effect as 
setting it once). Figure 1 shows an example insertion 
of two consecutive elements—S1and S2—using four 
hash functions: h1, h2, h3, and h4.

To look up an element, we hash it with all the hash 
functions and check the corresponding bits—if all of 
them are set to one, we return “yes”; otherwise, “no.” 
The filter will never return a false negative; that is, 
if the element was inserted, the answer will always 
be “yes.” However, we could have a false positive—a 
“yes” answer for an element that has never been in-
serted but whose bits have been set by chance by other 
element insertions.

False positives are the price we pay for the com-

pression gains. The silver lining is that because we 
can quantify false-positive rates analytically, we can 
control them.6 Generally, after the insertion of n ele-
ments, the probability that the filter will return a false 
positive is a nonlinear function of the bits-per-element 
ratio m/n and the number of hash functions k. Table 
1 lists different parameter combinations and their cor-
responding false-positive rates.

As it turns out, the routine use of cryptographic 
hashes in digital forensics makes it easy to introduce 
Bloom filters into the process. Instead of computing k 
separate hashes, we can take an object’s cryptographic 
hash, split it into several nonoverlapping subhashes, 
and use them as if different hash functions had pro-
duced them. For example, we could split a 128-bit 
MD5 hash into four 32-bit hashes, which would let 
us work with a 1-Gbyte filter and four hash functions. 
If we insert 50 million hashes, the expected false-
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Figure 1. The insertion of two elements into a Bloom filter using four hash functions: (a) an empty Bloom filter; (b) a Bloom filter after 

the insertion of one element, S1; and (c) a Bloom filter after the insertion of a second element, S2. Each insertion sets four bits in the 

filter; some bits might be selected by different elements—h4(S1) = h3(S3)—which can lead to false positives.
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 positive rate would be less than 0.3 per million, which 
in almost all cases would be quite acceptable. What we 
gain in return would be four memory accesses instead 
of 26. In many situations, such as the initial screen-
ing of evidence, much higher false-positive rates are 
acceptable to reduce the volume of data under consid-
eration. For example, we could increase the number 
of hashes from 50 to 500 million and expect a false-
positive rate of 0.2 percent.

Finding Similar Objects: 
Data Fingerprints
So far, we’ve considered searches for objects that are 
an exact copy of a reference object; a much more 
challenging problem is to find similar objects. For 
example, modern software has a propensity for fre-
quent online updates, which tends to age static hash 
sets rather quickly. We want to be able to identify 
executables and libraries that are likely to be newer 
versions of known application installations. Similarly, 
given a text file, we want to be able to automatically 
find different versions of it, perhaps as an HTML file 
or as part of another document.

By design, hashes are fragile—even if a single bit 
in a file changes, the hash will be completely differ-
ent. If we insert a single character into a file, all the 
block hashes following the change will also change. 
So, block-based hashing will do little to fundamen-
tally address the fragility problem. Instead, we need a 
smarter mechanism, called data fingerprinting, that can 
generate a signature of the data that’s more resilient to 
modifications. The term “digital fingerprint” is heav-
ily overloaded and signifies different things to different 
people. In particular, in the security and authentica-
tion domain, it usually refers to the message digest 
produced by a cryptographic hash function. Here, we 
consider a more relaxed form of fingerprinting that 
doesn’t aim to be unforgeable.

The essential idea has been around for decades and 
is fairly generic and simple. For every object, we select 
characteristic features and compare them to features 
selected from other objects, using some measure of 
correlation to draw conclusions. We could apply this 
approach at different abstraction levels, from compar-
ing raw binary data all the way up to natural language 
processing, where we could extract the semantics of 

text, for example, to make more abstract connections. 
In forensics, analysis at multiple levels can be relevant 
to an investigation; however, the computational cost 
tends to grow rapidly with the abstraction level. Here, 
we focus entirely on raw data analysis—we will con-
sider data objects mere strings of bytes; our goal is to 
find their similarities.

The seminal research on data fingerprinting, by 
Michael Rabin, dates back to 1981.7 It’s based on 
random polynomials, and its original purpose was 
“to produce a very simple real-time string-matching 
algorithm and a procedure for securing files against 
unauthorized changes.”7 In essence, we can view a 
Rabin fingerprint as a checksum with low, quanti-
fiable collision probabilities that can be used to effi-
ciently detect identical objects. Rabin and Richard 
Karp soon extended this research to improve pattern-
matching algorithms.8 The 1990s saw renewed in-
terest in Rabin’s work in the context of finding all 
things similar, with an emphasis on text. For example, 
Udi Manber created the sif tool for Unix to quantify 
similarities among text files.9 Sergey Brin and his col-
leagues, in Brin’s pre-Google years, used Rabin fin-
gerprinting in a copy-detection scheme,10 and Andrei 
Broder and his colleagues applied it to find syntactic 
similarities among Web pages.11

The basic idea, called anchoring, chunking, or shin-
gling, uses a sliding Rabin fingerprint over a fixed-size 
window to split the data into pieces. For every win-
dow of size w, we compute the hash h, divide it by a 
chosen constant c, and compare the remainder to an-
other constant m. If the two are equal (h mod c ≡ m), 
we declare the beginning of a chunk (an anchor), slide 
the window by one position, and continue the process 
until we reach the data’s end. For convenience, the 
value of c is typically a power of two (c = 2k), and m 
can be any fixed number between zero and c – 1.

Once we’ve determined our baseline anchoring, 
we can use it in numerous ways to select characteristic 
features. Figure 2 illustrates three examples:

Choose the chunks (or shingles) between anchors as •	
our features (Figure 2a).
Start at the anchor position, and pick the following •	
x number of bytes (Figure 2b).
Use multiple, nested features (Figure 2c).•	

Table 1. Example Bloom filter parameters and predicted false positives.

FalsE-posiTivE raTE (according To BiTs pEr ElEmEnT)

no. oF hashEs 8 10 12 16
4 0.0240 0.0117 0.0064 0.0024

6 0.0216 0.0083 0.0036 0.0009

4 0.0255 0.0081 0.0031 0.0006
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Although shingling schemes pick a randomized 
sample of features, they’re deterministic and, given 
the same input, produce the exact same features. 
Furthermore, they’re locally sensitive in that an an-
chor point’s determination depends only on the pre-
vious w bytes of input, where w could be as small as 
a few bytes. We can use this property to solve our 
fragility problem in traditional file and block-based 
hashing. Consider two versions of the same docu-
ment—we can view one of them as derived from the 
other by means of inserting and deleting characters. 
For example, converting an HTML page to plain 
text will remove all the HTML tags. Clearly, this 
would modify several features. However, we would 
expect chunks of unformatted text to remain intact 
and to produce some of the original features, letting 
us automatically correlate the versions. For the actual 
feature comparison, we store the selected features’ 
hashes and use them as a space-efficient representa-
tion of the object’s fingerprint.

We have some control over our feature’s average 
size through the selection of c: on random input, we 
expect features to be c bytes long on average. We face 
an important design choice. Smaller features provide 
better coverage and higher sensitivity at the expense 
of more storage and higher comparison costs. Larger 
features are easier on storage and the CPU but provide 
fewer details.

Optimizing Fingerprint Coverage
Many techniques strive to maximize coverage and 
minimize the possibility that a common feature as 
small as a few hundred bytes will be missed. One 
important area that requires this is malware detec-
tion. Autograph is an automated tool for generating 
signatures for traditional (static) malware.12 It uses a 
Rabin scheme to break up the payloads of collected 
suspicious traffic into pieces of average size of 256 
bytes (c = 256). It then compares them and extracts 
the statistically most likely signature for the specific 
piece of malware, in effect performing real-time, au-
tomated network forensics and defense. Because of the 
feature selection scheme’s resilience to various payload 
alignments, we can scale up the system to a distributed 
environment where multiple instances collaborate to 
generate the signatures more quickly.

Payload attribution systems (PASs) are a major area of 
network forensics research that continues to advance 
fingerprints. Basically, a PAS collects a network trace 
in a digested, compressed form. Afterward, it pro-
vides a query interface that lets us ask whether the 
trace contains a specific byte sequence. The actual 
trace isn’t stored, so we can’t go back and review the 
traffic. This is the price we pay for a typical com-
pression ratio of 50:1 and up, but the trace won’t be 
an added security risk. An essential building block in 

modern PASs is a Bloom filter, which provides most 
of the compression.

One specific implementation is the use of hierarchi-
cal Bloom filters (HBFs). One common way to utilize 
Bloom filters is to slice a payload into a sequence of 
fixed-size blocks, B1B2 … Bn, and insert each of them 
into the filter. We can split the query excerpt into same-
size blocks and ask the filter whether it has seen them. 
The problem is that the filter maintains no ordering 
information, so asking for B1B2 and B2B1 would both 
yield positives. An HBF alleviates this problem by in-
serting additional levels of superblocks produced by the 
successive concatenation of 2, 4, 8, … blocks.13 For ex-
ample, if the original payload consists of seven blocks—
B1B2B3B4B5B6B7—the HBF will insert into the filter 
these elements: B1, B2, B3, B4, B5, B6, B7, B1B2, B3B4, 
B5B6, and B1B2B3B4. Although this doesn’t eliminate 
the problem, it dramatically improves confidence in the 
results as the query excerpt’s size grows.

A recently proposed alternative to the hierarchical 
approach is a rolling Bloom filter (RBF),14 which also 
stores aggregated results but does so linearly. In the 
previous example, we could use an aggregation factor 
of 3 and a step of 2. This would result in the RBF in-
serting into the filter the superblock excerpts B1B2B3, 
B3B4B5, and B5B6B7. This method performs better in 
that it consistently achieves the best-case performance 
of an HBF.

Winnowing aims to improve the original Rabin 

Input data Anchor Selected feature

(a)

(b)

(c)

Figure 2 Rabin-style feature selection: (a) nonoverlapping, (b) fixed size, and 

(c) nested multilayer. Different feature selection techniques allow the baseline 

fingerprinting scheme to be customized for the intended applications.
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scheme’s coverage by ensuring that exactly one hash is 
picked from every data window of size w.15 It achieves 
this by first computing the hashes of all sequences of 
size k and then selecting the hash with the highest 
value as the fingerprinting feature. This is guaranteed 
to achieve more even distribution of fingerprinting 
features than the original technique, which tends to 
have nontrivial variation in feature size and distribu-
tion, especially for low-entropy data.

Winnowing multihashing (WMH) is among the most 
recent advances in PASs; it combines multiple Rabin 
polynomials, shingling, and winnowing.16 The result 
is a system that, for HTML traffic, produces a false-
positive rate of less than 1 in 10,000 for excerpts of 
at least 200 bytes and a compression ratio of 50:1. For 
130:1, WMH achieves the same false-positive rate for 
500-byte excerpts.

Similarity Hashing
So far, we’ve looked at systems that basically solve 
a particular type of needle-in-a-haystack problem—
given a small query string (the needle), does the data 
haystack contain it? A related problem is to estab-
lish “haystack similarity”—given two (500-Gbyte) 
haystacks, how similar are they on the basis of their 
needles? Similarity hashes aim to efficiently make 
such a comparison by selecting and compactly stor-
ing a set of characteristic features for each object of 
interest and by providing a mechanism to compare 
the hashes directly.

Inspired by earlier spam-filtering research, Jesse 
Kornblum proposed fuzzy hashing.17 This approach 
uses shingling to split the file into chunks, gener-
ates small, 6-bit hashes for every chunk, and con-
catenates them to produce the final hash, which is 
base64 encoded. To determine similarity, it treats the 
two hashes as text strings and compares them using 
an edit distance measure, which produces a number 
between 0 and 100. An interesting design choice is 
to limit the hash’s size to 80 symbols—this is mainly 
to give investigators a fixed hash value per file similar 
to the ones produced by cryptographic hashes (MD5, 
SHA-1, and so on). To achieve this, the algorithm re-
quires the overall length of the data. On the basis of 
this length, it estimates a value for c.

Furthermore, after the algorithm calculates the 
hash, if the result is longer than the target 80 sym-
bols, it doubles the c parameter and recalculates the 
hash from scratch. For example, for a set of MS Word 
documents, the algorithm performs the calculation 
twice on average. Because the actual file signature 
is sensitive to object size, it produces two hashes for 
two different resolutions—c and 2c. This takes the 
edge off the problem, but if the difference in size be-
tween the data objects exceeds a factor of four, the 
two hashes aren’t comparable. In practice, the hash 

does seem to effectively identify objects that are ver-
sions of each other and aren’t too big or dissimilar. 
However, the hash quickly loses resolution for larger 
files and can’t be applied to stream data where the size 
is unknown.

Around the same time as Kornblum, I proposed a 
similarity hash measure, primarily for detecting ver-
sions of executable files and libraries.18 Essentially, 
this method breaks the object into known compo-
nents (coded functions and resources), hashes each 
component, and combines them into a Bloom fil-
ter to produce the similarity hash. It then compares 
hashes by counting the number of corresponding bits 
in common between the two filters and comparing 
them with the theoretical expectations—any statisti-
cally significant deviation indicates similarity. Per-
formance results for system libraries demonstrate that 
this  method can readily detect versions, even for filters 
with very high compression rates.

My follow-up multiresolution similarity (MRS) 
hashing work addressed two main problems: accom-
modating arbitrarily large objects and comparing 
objects of widely disparate sizes (for example, a file 
and a drive image).19 The key idea is to simultane-
ously select features at multiple resolutions (see Fig-
ure 1c) using a Rabin shingling scheme, by using a 
set of multiplicative parameters for c = 256 for level 0, 
4,096 for level 1, 65,536 for level 2, and so on. Small 
objects are naturally compared at the finest resolution 
(level 0); for large ones, we can start at the lowest res-
olution to find out quickly whether any large-scale 
similarities exist. Depending on the target applica-
tion and time constraints, we can choose to move 
progressively to the appropriate resolution level. For 
objects of different magnitudes, we can pick any lev-
el that’s common to both of them, typically level 0. 
In terms of storage requirements, the MRS hash is 
approximately 0.5 percent of the original object size, 
which lets us, for example, load in main memory the 
hashes of two 500-Gbyte targets and compare them. 
The storage footprint is dominated by level-0 fea-
tures that are, on average, approximately 256 bytes 
long. So, we can drop the finest resolution from con-
sideration, reduce storage requirements by another 
factor of 16, and still achieve disk-block resolution 
with level-1 features.

Implementations
You can find the baseline hashing capabilities—hash-
ing of entire targets, file-based hashing, or block-based 
hashing—in virtually every commercial tool, such 
as AccessData’s FTK and Guidance Software’s En-
Case, as well as in open source tools such as SleuthKit 
(sleuthkit.org), maintained by Brian Carrier. The data-
 fingerprinting techniques are only now being adapted 
to the forensics domain and, at this stage, implementa-
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tions are primarily research prototypes. The HBF and 
WMH methodologies are relatively mature and have 
been implemented at the Polytechnic Institute of New 
York University as part of the ForNet research system 
for network forensics (http://isis.poly.edu/projects/
fornet). Kornblum maintains an open source version of 
his fuzzy-hashing scheme called  ssdeep (http://ssdeep.
sf.net). I maintain a research prototype of the MRS 
and am happy to provide the source on request.

H ashing is a primary, but underappreciated, tool in 
digital forensic investigations. Recent R&D has 

demonstrated that, with clever design, we can con-
struct robust fingerprinting and similarity hashes that 
can significantly speed up an investigation in several 
ways. We can also quickly and efficiently find versions 
of known objects, with which we can effectively nar-
row an inquiry’s focus by filtering data in or out. We 
can use the same techniques to screen targets for trace 
evidence (for example, remnants of a JPEG file) with-
out relying on file system metadata, which allows the 
processing of corrupted or formatted targets. We can 
quickly trace pieces of evidence (for example, a file) 
across multiple data sources—a file system image, a 
memory dump, network capture, and so on. Achiev-
ing this with traditional “exact” techniques is daunting 
because it requires parsing numerous formats and re-
constructing the objects. Payload attribution schemes 
allow efficient, reliable searches of network traces for 
small byte sequences (for example, a piece of malware), 
thereby supporting effective incidence response and 
network forensics. Overall, hash-based techniques are 
currently the only ones promising quick, high-level 
estimates of the content of large targets and fast multi-
drive correlation on a terabyte scale. 
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