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Abstract 
One of the persistent topics in digital forensic 

research in recent years has been the problem of 

finding all things similar. Developed tools usually 

take on the form of similarity, or fuzzy hash. 

In this paper, we present a generic empirical 

study of the problem of finding common features in 

binary data. Specifically, we study the problem of 

false positives and demonstrate that similarity tools 

work only as well as the underlying data allows them 

to and, therefore, must be aware of the basic 

properties of the input. We propose a new feature 

selection algorithm, which is based on the notion of 

statistically improbable features. We also show that 

the proposed method, can be tuned to account for the 

type-specific distribution of false positives. 

 

1. Introduction  

 
The problem of finding similar objects during 

digital forensic investigations can be viewed from at 

least two different but related perspectives. The first 

one is correlation of evidence—given some known 

set of objects (e.g. incriminating documents from a 

different source) automatically finding related ones in 

a huge pile of raw data can be of great help to an 

investigator. The second perspective is the detection 

of versions of known data, such as executables, with 

the purpose of excluding them from consideration. 

Developing a similarity method can be 

approached from two different directions: we could 

either use type-specific knowledge about the objects 

under investigation and develop specialized tools, or 

we could build more generic tools that do not use 

type-specific information. In general, specialized 

tools tend to be more precise but also require, 

depending on level of analysis, considerably more 

processing, whereas generic tools can work fast and 

on any data but yield less focused results. For 

example, one could correlate documents based on 

keyword extracted by a search engine (a specialized 

tool) or by performing some fine-grained hashing 

(generic). 

In this paper, we are interested in improving the 

results and interpretation of generic tools based on 

empirical data.  

 

2. Related Work  
 

2.1. Information Retrieval 

  
There has been a significant amount of work in 

the area of information retrieval (IR) that deals with 

approximate string matching. Yet, from a forensic 

perspective, there are a host of challenges that have 

not been addressed, as they are not a concern in the 

IR field. Those tend to fall in two categories: 

execution time and target domain. Generally, IR 

systems have all the time in the world to perform any 

preprocessing they need and the solutions are 

targeted at specific domains, usually text. Web search 

engines also utilize existing link information to 

connect objects. In forensics, there is the distinct 

need to have generic tools that work fast and help sift 

through terabytes of raw data. Naturally, we cannot 

expect such tools to have the fidelity of domain-

specific solutions but should be effective in finding 

binary similarity among digital artifacts. 

Much of the IR work has focused on web data 

and with the goal of either finding near-identical 

document, or to identifying content overlap. It 

appears that Brin [2] was among the first to word 

sequences to detect copyright violations. Follow-up 

work by Shivakumar and Garcia-Molina has focused 

on improving and scaling up the approach ([19], [22], 

[23]).  

Currenly, the state of the art is represented by 

Broder [4] and Charikar [5] and all other techniques 

use them as benchmarks and/or starting point for 

further development. Broder uses a sample of 

representative “shingles” consisting of ten-word 

sequences as a proxy for the document, whereas 

Charikar constructs locality sensitive hash functions 

to use in similarity estimation. A detailed explanation 

of these (and related) algorithms is beyond the scope 

of this paper. However, it is worth noting that almost 
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invariably, the approaches are optimized for text 

documents. Evaluation/comparison studies (e.g., [7]) 

of these and other methods have focused primarily on 

accuracy and recall measurements and, to some 

degree, the number of documents compared. 

Execution time performance, an increasingly pressing 

concern in forensics, is notably absent. 

 
2.2. Payload Attribution Systems 

  
There is a large body of related research in 

payload attribution systems stemming primarily from 

Rabin’s seminal work [8] on content fingerprinting. 

Payload attribution systems deal with the problem of 

mapping a (short) string to a particular packet in a 

network trace. This has been an active area of 

research and we focus on the most recent results.  

Fingerprints are short checksums of strings with 

the property that the probability of two different 

objects having the same fingerprint is very small. 

Rabin defined a fingerprinting scheme for binary 

strings based on polynomials. This scheme has found 

several applications, for example, to defining block 

boundaries for identifying similar files [11] and for 

web caching [17]. Winnowing [24] is an improved 

Rabin-like method for generating fingerprints.  

Essentially, it forces a deterministic choice within a 

fixed window based on all the computed fingerprints 

for every offset within the window by choosing the 

smallest hash value. 

Hierarchical Bloom filters [19] create compact 

digests of payloads and provides probabilistic 

answers to membership queries on the excerpts of 

payloads. [6] proposes the concept of a rolling Bloom 

filter as a more general Rabin scheme. 

Ponec et al. [14] have a rather exhaustive 

evaluation of a number of different variations based 

on the above work and proposes a Winnowing Multi-

Hashing solution, which combines several ideas—

multiple Rabin hashes, shingling, and winnowing to 

achieve better performance at 50:1 to 130:1 

compression rates. 

 

2.3. File Similarity Hashes 
Kornblum [10] was among the first to propose 

the use of a generic fuzzy hash scheme for forensic 

purposes and developed the ssdeep tool. It generates 

string hashes of up to 80 bytes that are the 

concatenation of 6-bit piece-wise hashes. The 

comparison is then performed using edit distance. 

While ssdeep has gained some popularity, the fixed-

size hash it produces quickly loses granularity, and 

can only be expected to work for relatively small files 

of similar sizes. 

Around the same time Roussev et al. [18] 

proposed a scheme which uses partial knowledge of 

the internal object structure and Bloom filters [1], [3] 

to come up with a similarity scheme that is tailored to 

objects with known structure. This was followed by a 

Rabin-style multi-resolution scheme [19] that can 

work on arbitrary objects and balances performance 

and accuracy requirements by keeping hashes at 

several resolutions. 

Outside forensics, [15] proposes an interesting 

scheme for the identification of similar files on a 

peer-to-peer network. It is targeted at identifying 

large-scale similarity (e.g. same movie in different 

languages) that can be used to offer alternatives to 

user to download. 

 

3. Entropy-based Feature Distribution  

 
To summarize, the general approach to finding 

similarities between two objects is based on 

identifying a set of features in each of the objects and 

then comparing the features themselves. A feature in 

this context is simply a sequence of consecutive bits 

selected by some criterion from the object. Overall, 

the level of similarity is related (not necessarily in a 

linear fashion) to the number of features that the two 

objects have in common—the higher the 

commonality, the higher the similarity. Evidently, 

there are two questions to be answered in any 

similarity scheme: a) how are the features selected; 

and b) how are they compared. In this section, we are 

interested in the former, as it defines the baseline 

performance of any scheme. 

For the purposes of this paper, we define a false 

positive as a feature that is common to two, or more 

objects that are unrelated. We also refer to such a 

feature as non-identifying, ambiguous, or weak. Let 

us consider a few questions which, to the best of our 

knowledge, have not been adequately addressed by 

previous research. 

• What is the 'natural' false positive rate of binary 

objects? That is, given two unrelated objects, 

what is the probability that we will find common 

features? 

• Are there statistically significantly variations 

based on the type of the underlying data? In 

other words, are certain object types more prone 

to false positives than others?  

• Is it possible to derive generic means of 

predicting weak features? By generic we mean 

that the method could be applying to any data 

type with no, or minimal amount of per-type 

information. 
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Based on informal observations, our working 

hypothesis is that the answer to the last two questions 

is 'yes', and we decided to perform a more formal 

study of the data. First, we obtained from a search 

engine a random collection of files of various file 

types using random keywords from a dictionary file 

(one keyword per file). After validating and cleaning 

up the collection, we ended up with the set described 

in Table 1. We also limited the minimum size to 4KB 

(the typical block size), eliminated several outlier 

“jumbo” files (e.g. a 225MB log file), and limited the 

number of files for any file type to 4,000 by random 

sub-sampling. (The validation and the restriction on 

file size are the main reasons we ended up with 

different number of files per file type.) Table 1 

summarizes the resulting sets. 

Table 1 Experimental data set summary 

Type Files Size (MB)

doc   4,000 955     

gz   1,318 414     

html   2,678 96     

jpg   4,000 354     

pdf   3,943 2,150     

txt   2,260 148     

xls   1,303 307     

xml   1,350 198     

Total 20,852 4,622     

We should note that we have the reasonable 

expectation that, with respect to content, the files in 

the set are unrelated to each other.  

Next, we define a normalized entropy measure, 

based on which we will classify all features. Entropy 

is a very broad measure of the amount of information 

contained in the data. We emphasize that this kind of 

reasoning about information is all in the context of 

information theory, which does not always coincide 

with human notions of information. For example, 

from a theoretical perspective, perfectly random data 

has the highest information content and any patterns, 

such as those produced by natural language, reduce 

the information content. Therefore, it is important to 

complete the loop and relate the theory to what a 

human investigator would find useful. Further, using 

entropy measures on relatively small amounts of data 

could potentially yield skewed results. Despite these 

caveats, we will see that entropy is a useful tool in 

preprocessing and evaluating data. 

Recall that, given a source S with alphabet A = 

{1, …, m} that generates a sequence {X1, X2, …}, the 

first-order entropy is defined as 

∑−=
i ii XPXPSH )(log)()( 2

, and with the 

standard iid assumption for the sequence, is the 

universally used method for estimating the entropy of 

the source. With the base of the logarithm set to 2, we 

can interpret the quantity as the average number of 

bits per element needed to encode the sequence. 

For our purposes, we treat individual bytes as 

sequence elements and we want to estimate H for 

sequences of length B. Based on practical 

considerations, such as typical packet size, we are 

interested in relatively short sequences (features) 

where B = 64, 128. Larger features are too big when 

the target is a network packet, whereas smaller 

features require too much processing and the quality 

of the features and entropy estimates go down. 

The specific values chosen for B are ones of 

convenience and one could pick any specific number 

that is practical in or around the range. To simplify 

processing, and to make results comparable, we 

define a normalized entropy estimate (HNorm) as 

 )log/)((1000 2 BSHH Norm = . 

In other words, we use an integer in the 0..1000 

range to represent the range between minimum and 

maximum entropy regardless of the value of B. It is 

not difficult to see that neighboring windows (that 

differ in their starting position by one) will have 

strongly correlated entropy estimates as their content 

differs by one byte. This allows for a very efficient 

incremental computation of estimates based on 

previous ones. Using a pre-computed (B+1) x (B+1) 

table of all the possible changes, we reduce the 

incremental computation to two increments, an 

addition and a table lookup. 

Next, we generated a set of histograms to 

illustrate the relationship between Hnorm and the 

different file types. For that purpose, we generated all 

the features of size B = 128 for all the files in the set.   

As Figure 1 clearly demonstrates, one can find a 

rather characteristic distribution for each type, and, in 

fact, a similar kind of entropy analysis has been 

proposed as a means of identifying data belonging to 

different file types. A few basic observations are 

worth mentioning: 

• The data covers the average case and individual 

objects, especially small ones, can and do deviate 

significantly from the average case. One simple 

example are composite types, such as doc/xls—

the histogram on Figure 1a/g shows a significant 

concentration of high-entropy data due to 

embedded compressed images (~2/3 of all doc 

files contained at least one image). Evidently, a 

file which contains no compressed data would 

have a very different distribution. A small image 

will have, in relative terms, more low-entropy 

header data than the average, simply because the 

header is a larger fraction of overall file size.
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Figure 1 Empirical probability density functions for experimental data sets 
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• All the text data types (html, txt, xml) have very 

similar distributions, which is a rather intuitive 

result. Nonetheless, we will see that there are 

non-trivial differences with respect to false 

positive rates. 

• All of the compressed data types—gz, jpg, and 

pdf—exhibit a very compact bell at the high end 

of the spectrum. Jpg objects show a blip of low-

entropy data due to header information and 

relatively small average size (~90KB). In 

contrast, gz objects do not—recall that each 

contains a single compressed file and, thus, has a 

minimal header. The pdf set is the only one the 

three that contains a notable amount of text 

(meta data) and that manifests itself as a 

smallish, broad peak around 700. 

• The doc/xls files have the most varied 

distributions as they have complex internal 

structure (essentially, a small file system) and 

serve as containers for other object types, such as 

images. This results in peaks at both ends of the 

spectrum, along with multiple other local peaks 

reflecting large amounts of table and textual 

information.   

In the following section we explore the 

relationship between the entropy measure of a feature 

and its false positive (FP) probability. 

 

4. Entropy-based FP Prediction   

 
It is worth noting that the relationship between 

the entropy of a feature and its uniqueness is rather 

complex—a fact that appears to be underappreciated 

in the digital forensics literature. 

Occasionally, the entropy number tells pretty 

much the whole story: for the very low end of the 

spectrum, it basically means that the features are 

mostly the same repeat character with some small 

variations. Thus, we can be quite certain that this 

kind of data produces weak features that cannot be 

reliably attributed. Most of the time, however, the 

entropy measure does not tell us the whole story and 

should be treated only as a hint, especially when 

applied to short sequences. For example, assuming a 

B=64, any sequence containing 64 different 

characters would have maximum entropy. Yet, that is 

statistically unlikely so those are usually predictable 

features, such as tables, that are poor candidates for 

characteristic features. As the following data shows, 

things are not straightforward through the rest of the 

spectrum either. 

We begin our discussion with a focus on pure 

text (txt) data as it has the fewest artifacts related to 

formatting and can serve as a baseline for several 

other types. After some experiments on network data, 

we decided to work with finer-grain features of 64 

bytes so, unless otherwise noted, the data is for B=64. 

First, let us examine consider the relationship 

between Hnorm and the FP rate. In other words, we 

estimate empirically the conditional probability that a 

feature is non-unique, given a certain entropy 

number. The result is shown as a bar chart on Figure 

2 (data has been aggregated by a factor of ten to 

allow for proper chart display). We can see that, for 

extremely low entropy scores, we get close to 100% 

false positives. That number drops sharply and, for 

scores of 200+, the probability stays below 10%, with 

numbers staying below 5% for most of that interval. 

To put these probabilities into perspective, 

consider the overall fraction of features have a 

particular entropy number. The line graph on Figure 

2 gives the cumulative distribution of features as a 

function of the entropy measure Hnorm. By and large, 

it is good news—if we decide to drop from 

consideration all features with a measure below 200, 

for example, this would result in the elimination of 

only 2.21% of the features from consideration. If we 

moved the cut off point to 250—the first point where 

FP rate drops below 0.05, we would still keep 97% of 

the features. 

Yet, the figure shows that, to the right, the FP 

rate forms another little peak, which we may want to 

also exclude from consideration. Obviously, the 

lower we drop the FP threshold for inclusion, the 

lower the overall (unconditional) FP rate, and the 

larger the fraction of excluded features. To better 

understand this relationship, on Figure 2 we have 

shown the fraction of included features (coverage) as 

a function of the selected threshold for values from 

0.1 to 0.01.  

The coverage stays almost constant for threshold 

FP rates down to 0.07, with the corresponding 

expected overall FP rate of about 0.035. As the 

threshold drop from 0.06 to 0.03, coverage drops 

from 0.80 to 0.47, with overall FP rate going from 

0.025 to 0.011. Note that lower FP coverage is not all 

bad—it serves as a natural compression by reducing 

the number of features independently of other 

compression techniques that may be used, such as 

Bloom filters [1], [3]. If the search targets are large, 

reducing FP rate may well outweigh some 

imperfections in coverage. Below a threshold of 0.02, 

we see a catastrophic collapse as the selection 

scheme completely loses coverage. 
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Figure 2 FP rate and data CDF for plain text 
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Figure 3 Overall FP rate and feature coverage based on FP threshold 
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We also examined the distribution of the 

coverage for the threshold of 0.03 to understand how 

frequently big gaps in the coverage occur. Since the 

average distance between two selected features is 

only 1.59 we used the histogram on Figure 3 to better 

understand the behavior. It shows the cumulative 

probability that the gap in coverage falls within a 

particular interval. Inversely, we can infer the 

probability that it is greater than any particular 

number. For example, the probability that the gap 

exceeds 1024 bytes is 1 on 100,000. It is evident that, 

even when overall coverage drops in half, the local 

coverage stays largely even, although notable but 

infrequent gaps do occur.   

Having established a baseline with plain text, 

now consider the behavior of more complex data 

types, such as html. Generally, we would expect for 

html to be very similar given that it is designed to be 

human-readable; however, it is of interest to see the 

effects of common formatting on feature properties.  

As Figure 4 clearly shows, the effect on FP rates 

is quite dramatic. In particular, the FP rate never 

drops below 0.027, and, with the exception of very 

low entropy features, remains consistently higher 

than the corresponding ones for plain text. While this 

makes intuitive sense due to the fact that html 

formatting brings more predictability into the 

features, we have not seen such issues discussed in 

the evaluation of similarity schemes. We should 

emphasize that these results are very generic and, any 

similarity scheme that picks features at random—as 

all current ones effectively do—will see non-trivial 

differences in its FP rates depending on the 

underlying data.  
 

5. Statistically Improbable Features  
   

We could, of course, reproduce more charts for 

the different file types; however, that would not 

answer the question of how to utilize the presented 

data for similarity discovery.  

One possibility is to use the per-type FP charts 

and pick features with the lowest FP rates. That 

would, in principle, produce the lowest average FP 

rates. However such features tend to be clustered—if 

we estimate (based on the entropy measure) that a 

feature will have a low FP, then the neighboring 

features will have a very similar, or identical entropy 

as they differ by one byte. Further, we would like a 

scheme that produces nice coverage without the need 

to calculate the hash of every single feature. 

Our basic idea is to use the observed distribution 

of the computed entropy estimates as the basis for 

selecting statistically improbable features. For that 

purpose, we associate a precedence rank with each 

entropy measure value that is proportional to the 

probability that it will be encountered. In other 

words, the least likely feature as measured by its 

entropy score gets the lowest rank, whereas the most 

common one is assigned the highest. Assuming a 

fixed feature size of length B, we can associate 

precedence scores for all of the L-B features of an 

object, where L is the size of the object. Features 

eliminated due to too low/high score are assigned a 

special null score to prevent their selection 

altogether.  

Next, we pick a window size of W and, for every 

W consecutive rank scores, we select the leftmost 

minimum score (this is a sliding window type of 

calculation). All the while we keep count of how 

many times every feature has been picked as the 

minimum score. Thus, if a feature is picked k times (k 

∈ [1..W]), it means that it is the local minimum 

within a window of size W + k – 1 and can be viewed 

as a measure of the relative local popularity of a 

particular feature. 

Finally, we pick a threshold parameter t and 

select all features with k ≥ t as the fingerprinting 

features of the object, and hash them using MD5.  

Figure 5 illustrates the process for a 320-byte 

snippet from a gz file (L = 320). For B = 64, we can 

generate 256 consecutive entropy estimates and 256 

corresponding rank scores (top chart). Note that the 

entropy estimate changes minimally between 

neighboring estimates, and generally stays within a 

narrow range. However, every once in a while, it 

drifts out of that range, and the rank score drops 

sharply (around offsets 40 and 180 on the chart). This 

usually results in a popular feature, although a drop is 

not a necessary condition for high popularity (e.g. 

offset 120). Figure 5 also shows that for a threshold 

value of t = 16, four features would be selected from 

the snippet, whereas t = 48 results in two features 

being selected. 

There are two obvious questions that arise in a 

real implementation: Which distribution should we 

choose to base our rankings on? Is there enough local 

variability in entropy scores to support the heuristic 

that local choices will tend to pick the same features? 

In general, the first question is unlikely to have a 

single correct answer. A simple generic solution is to 

have a benchmark set and use it to set the ranks. This 

could be customized by profiling actual traffic for the 

specific deployment scenario. Yet, under any 

circumstances, we can expect that traffic will non-

trivially deviate from our definition of typical so if 

our method is too sensitive to that choice, it would be 

less useful as it would result in fewer local 

agreements on the choice of features. To compensate, 

we would have to lower t to select enough features. 
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Figure 4 FP rate by entropy measure for HTML 
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Figure 5 Rank and popularity scores for a 320-byte snippet: L=320, B=64, W = 64 
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Figure 6 Feature selection performance on random data 
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Therefore, we could choose the doc distribution 

as our reference point and use it on all the sets. Going 

back to Figure 1, we can see that it almost serves as a 

composite of the rest with several local peaks. Actual 

data will effectively mask out parts of the ranking—

e.g. compressed data will have little use for entropy 

ranks to the left of its bell, whereas text data will not 

need anything to the right of its bell.  

The answer to the second question is a confident 

‘yes’—even random data exhibits a bell-shaped 

distribution of entropy scores so even within a 

relatively small of window of 64-128 bytes, a few of 

the features are likely to stand out as statistically 

improbable, relative to the rest. 

 

6. Measuring File Similarity  

 
We are now ready to go back to our original 

problem of finding similar objects. To establish a 

baseline measurement of the effectiveness of the 

described methods, we ran a controlled experiment 

using random data and known amounts of 

overlapping content. Specifically, we used two 

randomly generated files and produced mixed 

versions of them in the following fashion: take x 

percent of file #1 and mix with 100-x percent from 

file #2. The mixing was done in blocks of 512 bytes 

and we used 21 values for x: 0, 5, 10, …, 100. Note 

that we selected the blocks at random so even the 

100% case is not an identical file but a file containing 

the same data block in a random permutation. 

Further, we fixed W = 64, and varied t from 16 to 64 

with a step of 8. Figure 6 summarizes the results. 

As we can see from the chart, the number of 

common features increases linearly with the increase 

of the amount of data in common and the slope of the 

increase is determined by the threshold parameter t. 

Generally, a lower the value for t means that more 

features are retained, whereas a higher value selects 

fewer features and improves compression. In this 

case, t = 16 retains an average (over the different 

runs) of 847 features, whereas t = 64 only 110. Using 

an MD5 hash to compress the feature representation 

would mean that our storage requirements would be 

13,552 and 7,040 bytes, respectively. This yields 

corresponding compression ratios of 3.8:1 and 7.2:1 

that can be further improved 10 times by using a 

Bloom filter with 10 bits per element and 0.8% FP 

rate. Further reductions are possible by selecting a 

bigger value for W, such as 128, 256, 512. 

The above results can readily be replicated for 

compressed data types such as jpg, pdf, and gz. For 

text, the results are quite similar for unrelated text, 

however, things like style and common topic do tend 

to yield higher results as the syntactic similarity 

increases. Generally, the results for non-random data 

need to be evaluated with respect a baseline FP rate, 

which is relatively straightforward to obtain from a 

representative set of files. Alternatively, one could 

use the set to generate a set of duplicate features and 

ignore them in the actual data.  

A large-scale experimental validation of an early 

prototype implementation on 4.6GB of real data 

(Table 1) is the subject of a separate paper. In 

summary, we were able to detect files within 

simulated network traffic based on a single packet 

with 0.9987 to 0.9844 accuracy (depending on file 

type) for feature size of 64 and threshold of 16. Our 

current implementation is capable of 100MB/s 

sustained throughput on a quad-core processor—this 

includes feature selection, feature hashing, and 

comparison with a reference set. We expect that an 

improved implementation would need no more than 

two cores to sustain that rate. 

 

7. Conclusions  

 
In this paper, we presented a new approach to 

selecting syntactic features for similarity 

measurements. Our work makes the following 

contributions: 

• Through empirical data, we have shown that a 

basic entropy measure can provide a valuable 

guideline with respect to the uniqueness of a 

particular feature. 

• We have shown that different data types exhibit 

different behavior and that similarity measures 

can be tuned to keep a lid on overall false 

positive rate. 

• We proposed a new method for selecting 

characteristic features that does not rely on a 

Rabin scheme to be content-sensitive. Instead, 

we use an entropy measure and empirical 

distribution data to select statistically improbable 

features. 

• The new method is very stable and predictable 

with the respect to the coverage it produces, and, 

unlike previous work, can easily be tuned to the 

underlying data.  

 

In the immediate future we plan to full develop a 

practical, high-performance tool that can be used to 

correlate evidence on a large scale.  
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