
 1

Building a Better Similarity Trap with Statistically Improbable Features

Vassil Roussev

Department of Computer Science

University of New Orleans

New Orleans, LA 70148

vassil@cs.uno.edu

Abstract
One of the persistent topics in digital forensic

research in recent years has been the problem of

finding all things similar. Developed tools usually

take on the form of similarity, or fuzzy hash.

In this paper, we present a generic empirical

study of the problem of finding common features in

binary data. Specifically, we study the problem of

false positives and demonstrate that similarity tools

work only as well as the underlying data allows them

to and, therefore, must be aware of the basic

properties of the input. We propose a new feature

selection algorithm, which is based on the notion of

statistically improbable features. We also show that

the proposed method, can be tuned to account for the

type-specific distribution of false positives.

1. Introduction

The problem of finding similar objects during

digital forensic investigations can be viewed from at

least two different but related perspectives. The first

one is correlation of evidence—given some known

set of objects (e.g. incriminating documents from a

different source) automatically finding related ones in

a huge pile of raw data can be of great help to an

investigator. The second perspective is the detection

of versions of known data, such as executables, with

the purpose of excluding them from consideration.

Developing a similarity method can be

approached from two different directions: we could

either use type-specific knowledge about the objects

under investigation and develop specialized tools, or

we could build more generic tools that do not use

type-specific information. In general, specialized

tools tend to be more precise but also require,

depending on level of analysis, considerably more

processing, whereas generic tools can work fast and

on any data but yield less focused results. For

example, one could correlate documents based on

keyword extracted by a search engine (a specialized

tool) or by performing some fine-grained hashing

(generic).

In this paper, we are interested in improving the

results and interpretation of generic tools based on

empirical data.

2. Related Work

2.1. Information Retrieval

There has been a significant amount of work in

the area of information retrieval (IR) that deals with

approximate string matching. Yet, from a forensic

perspective, there are a host of challenges that have

not been addressed, as they are not a concern in the

IR field. Those tend to fall in two categories:

execution time and target domain. Generally, IR

systems have all the time in the world to perform any

preprocessing they need and the solutions are

targeted at specific domains, usually text. Web search

engines also utilize existing link information to

connect objects. In forensics, there is the distinct

need to have generic tools that work fast and help sift

through terabytes of raw data. Naturally, we cannot

expect such tools to have the fidelity of domain-

specific solutions but should be effective in finding

binary similarity among digital artifacts.

Much of the IR work has focused on web data

and with the goal of either finding near-identical

document, or to identifying content overlap. It

appears that Brin [2] was among the first to word

sequences to detect copyright violations. Follow-up

work by Shivakumar and Garcia-Molina has focused

on improving and scaling up the approach ([19], [22],

[23]).

Currenly, the state of the art is represented by

Broder [4] and Charikar [5] and all other techniques

use them as benchmarks and/or starting point for

further development. Broder uses a sample of

representative “shingles” consisting of ten-word

sequences as a proxy for the document, whereas

Charikar constructs locality sensitive hash functions

to use in similarity estimation. A detailed explanation

of these (and related) algorithms is beyond the scope

of this paper. However, it is worth noting that almost

 2

invariably, the approaches are optimized for text

documents. Evaluation/comparison studies (e.g., [7])

of these and other methods have focused primarily on

accuracy and recall measurements and, to some

degree, the number of documents compared.

Execution time performance, an increasingly pressing

concern in forensics, is notably absent.

2.2. Payload Attribution Systems

There is a large body of related research in

payload attribution systems stemming primarily from

Rabin’s seminal work [8] on content fingerprinting.

Payload attribution systems deal with the problem of

mapping a (short) string to a particular packet in a

network trace. This has been an active area of

research and we focus on the most recent results.

Fingerprints are short checksums of strings with

the property that the probability of two different

objects having the same fingerprint is very small.

Rabin defined a fingerprinting scheme for binary

strings based on polynomials. This scheme has found

several applications, for example, to defining block

boundaries for identifying similar files [11] and for

web caching [17]. Winnowing [24] is an improved

Rabin-like method for generating fingerprints.

Essentially, it forces a deterministic choice within a

fixed window based on all the computed fingerprints

for every offset within the window by choosing the

smallest hash value.

Hierarchical Bloom filters [19] create compact

digests of payloads and provides probabilistic

answers to membership queries on the excerpts of

payloads. [6] proposes the concept of a rolling Bloom

filter as a more general Rabin scheme.

Ponec et al. [14] have a rather exhaustive

evaluation of a number of different variations based

on the above work and proposes a Winnowing Multi-

Hashing solution, which combines several ideas—

multiple Rabin hashes, shingling, and winnowing to

achieve better performance at 50:1 to 130:1

compression rates.

2.3. File Similarity Hashes
Kornblum [10] was among the first to propose

the use of a generic fuzzy hash scheme for forensic

purposes and developed the ssdeep tool. It generates

string hashes of up to 80 bytes that are the

concatenation of 6-bit piece-wise hashes. The

comparison is then performed using edit distance.

While ssdeep has gained some popularity, the fixed-

size hash it produces quickly loses granularity, and

can only be expected to work for relatively small files

of similar sizes.

Around the same time Roussev et al. [18]

proposed a scheme which uses partial knowledge of

the internal object structure and Bloom filters [1], [3]

to come up with a similarity scheme that is tailored to

objects with known structure. This was followed by a

Rabin-style multi-resolution scheme [19] that can

work on arbitrary objects and balances performance

and accuracy requirements by keeping hashes at

several resolutions.

Outside forensics, [15] proposes an interesting

scheme for the identification of similar files on a

peer-to-peer network. It is targeted at identifying

large-scale similarity (e.g. same movie in different

languages) that can be used to offer alternatives to

user to download.

3. Entropy-based Feature Distribution

To summarize, the general approach to finding

similarities between two objects is based on

identifying a set of features in each of the objects and

then comparing the features themselves. A feature in

this context is simply a sequence of consecutive bits

selected by some criterion from the object. Overall,

the level of similarity is related (not necessarily in a

linear fashion) to the number of features that the two

objects have in common—the higher the

commonality, the higher the similarity. Evidently,

there are two questions to be answered in any

similarity scheme: a) how are the features selected;

and b) how are they compared. In this section, we are

interested in the former, as it defines the baseline

performance of any scheme.

For the purposes of this paper, we define a false

positive as a feature that is common to two, or more

objects that are unrelated. We also refer to such a

feature as non-identifying, ambiguous, or weak. Let

us consider a few questions which, to the best of our

knowledge, have not been adequately addressed by

previous research.

• What is the 'natural' false positive rate of binary

objects? That is, given two unrelated objects,

what is the probability that we will find common

features?

• Are there statistically significantly variations

based on the type of the underlying data? In

other words, are certain object types more prone

to false positives than others?

• Is it possible to derive generic means of

predicting weak features? By generic we mean

that the method could be applying to any data

type with no, or minimal amount of per-type

information.

 3

Based on informal observations, our working

hypothesis is that the answer to the last two questions

is 'yes', and we decided to perform a more formal

study of the data. First, we obtained from a search

engine a random collection of files of various file

types using random keywords from a dictionary file

(one keyword per file). After validating and cleaning

up the collection, we ended up with the set described

in Table 1. We also limited the minimum size to 4KB

(the typical block size), eliminated several outlier

“jumbo” files (e.g. a 225MB log file), and limited the

number of files for any file type to 4,000 by random

sub-sampling. (The validation and the restriction on

file size are the main reasons we ended up with

different number of files per file type.) Table 1

summarizes the resulting sets.

Table 1 Experimental data set summary

Type Files Size (MB)

doc 4,000 955

gz 1,318 414

html 2,678 96

jpg 4,000 354

pdf 3,943 2,150

txt 2,260 148

xls 1,303 307

xml 1,350 198

Total 20,852 4,622

We should note that we have the reasonable

expectation that, with respect to content, the files in

the set are unrelated to each other.

Next, we define a normalized entropy measure,

based on which we will classify all features. Entropy

is a very broad measure of the amount of information

contained in the data. We emphasize that this kind of

reasoning about information is all in the context of

information theory, which does not always coincide

with human notions of information. For example,

from a theoretical perspective, perfectly random data

has the highest information content and any patterns,

such as those produced by natural language, reduce

the information content. Therefore, it is important to

complete the loop and relate the theory to what a

human investigator would find useful. Further, using

entropy measures on relatively small amounts of data

could potentially yield skewed results. Despite these

caveats, we will see that entropy is a useful tool in

preprocessing and evaluating data.

Recall that, given a source S with alphabet A =

{1, …, m} that generates a sequence {X1, X2, …}, the

first-order entropy is defined as

∑−=
i ii XPXPSH)(log)()(2

, and with the

standard iid assumption for the sequence, is the

universally used method for estimating the entropy of

the source. With the base of the logarithm set to 2, we

can interpret the quantity as the average number of

bits per element needed to encode the sequence.

For our purposes, we treat individual bytes as

sequence elements and we want to estimate H for

sequences of length B. Based on practical

considerations, such as typical packet size, we are

interested in relatively short sequences (features)

where B = 64, 128. Larger features are too big when

the target is a network packet, whereas smaller

features require too much processing and the quality

of the features and entropy estimates go down.

The specific values chosen for B are ones of

convenience and one could pick any specific number

that is practical in or around the range. To simplify

processing, and to make results comparable, we

define a normalized entropy estimate (HNorm) as

)log/)((1000 2 BSHH Norm = .

In other words, we use an integer in the 0..1000

range to represent the range between minimum and

maximum entropy regardless of the value of B. It is

not difficult to see that neighboring windows (that

differ in their starting position by one) will have

strongly correlated entropy estimates as their content

differs by one byte. This allows for a very efficient

incremental computation of estimates based on

previous ones. Using a pre-computed (B+1) x (B+1)

table of all the possible changes, we reduce the

incremental computation to two increments, an

addition and a table lookup.

Next, we generated a set of histograms to

illustrate the relationship between Hnorm and the

different file types. For that purpose, we generated all

the features of size B = 128 for all the files in the set.

As Figure 1 clearly demonstrates, one can find a

rather characteristic distribution for each type, and, in

fact, a similar kind of entropy analysis has been

proposed as a means of identifying data belonging to

different file types. A few basic observations are

worth mentioning:

• The data covers the average case and individual

objects, especially small ones, can and do deviate

significantly from the average case. One simple

example are composite types, such as doc/xls—

the histogram on Figure 1a/g shows a significant

concentration of high-entropy data due to

embedded compressed images (~2/3 of all doc

files contained at least one image). Evidently, a

file which contains no compressed data would

have a very different distribution. A small image

will have, in relative terms, more low-entropy

header data than the average, simply because the

header is a larger fraction of overall file size.

 4

Figure 1 Empirical probability density functions for experimental data sets

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900 1000

(a) H norm distribution: doc

P
ro

b
a

b
il
it

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 100 200 300 400 500 600 700 800 900 1000

(b) H norm distribution: gz

P
ro

b
a

b
il
it

y

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 100 200 300 400 500 600 700 800 900 1000

(c) H norm distribution: html

P
ro

b
a

b
il
it

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 100 200 300 400 500 600 700 800 900 1000

(d) H norm distribution: jpg

P
ro

b
a

b
il
it

y

0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300 400 500 600 700 800 900 1000

(e) H norm distribution: pdf

P
ro

b
a

b
il
it

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 100 200 300 400 500 600 700 800 900 1000

(f) H norm distribution: txt

P
ro

b
a

b
il
it

y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 100 200 300 400 500 600 700 800 900 1000

(g) H norm distribution: xls

P
ro

b
a

b
il
it

y

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 100 200 300 400 500 600 700 800 900 1000

(h) H norm distribution: xml

P
ro

b
a

b
il
it

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900 1000

(a) H norm distribution: doc

P
ro

b
a

b
il
it

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 100 200 300 400 500 600 700 800 900 1000

(b) H norm distribution: gz

P
ro

b
a

b
il
it

y

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 100 200 300 400 500 600 700 800 900 1000

(c) H norm distribution: html

P
ro

b
a

b
il
it

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 100 200 300 400 500 600 700 800 900 1000

(d) H norm distribution: jpg

P
ro

b
a

b
il
it

y

0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300 400 500 600 700 800 900 1000

(e) H norm distribution: pdf

P
ro

b
a

b
il
it

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 100 200 300 400 500 600 700 800 900 1000

(f) H norm distribution: txt

P
ro

b
a

b
il
it

y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 100 200 300 400 500 600 700 800 900 1000

(g) H norm distribution: xls

P
ro

b
a

b
il
it

y

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 100 200 300 400 500 600 700 800 900 1000

(h) H norm distribution: xml

P
ro

b
a

b
il
it

y

 5

• All the text data types (html, txt, xml) have very

similar distributions, which is a rather intuitive

result. Nonetheless, we will see that there are

non-trivial differences with respect to false

positive rates.

• All of the compressed data types—gz, jpg, and

pdf—exhibit a very compact bell at the high end

of the spectrum. Jpg objects show a blip of low-

entropy data due to header information and

relatively small average size (~90KB). In

contrast, gz objects do not—recall that each

contains a single compressed file and, thus, has a

minimal header. The pdf set is the only one the

three that contains a notable amount of text

(meta data) and that manifests itself as a

smallish, broad peak around 700.

• The doc/xls files have the most varied

distributions as they have complex internal

structure (essentially, a small file system) and

serve as containers for other object types, such as

images. This results in peaks at both ends of the

spectrum, along with multiple other local peaks

reflecting large amounts of table and textual

information.

In the following section we explore the

relationship between the entropy measure of a feature

and its false positive (FP) probability.

4. Entropy-based FP Prediction

It is worth noting that the relationship between

the entropy of a feature and its uniqueness is rather

complex—a fact that appears to be underappreciated

in the digital forensics literature.

Occasionally, the entropy number tells pretty

much the whole story: for the very low end of the

spectrum, it basically means that the features are

mostly the same repeat character with some small

variations. Thus, we can be quite certain that this

kind of data produces weak features that cannot be

reliably attributed. Most of the time, however, the

entropy measure does not tell us the whole story and

should be treated only as a hint, especially when

applied to short sequences. For example, assuming a

B=64, any sequence containing 64 different

characters would have maximum entropy. Yet, that is

statistically unlikely so those are usually predictable

features, such as tables, that are poor candidates for

characteristic features. As the following data shows,

things are not straightforward through the rest of the

spectrum either.

We begin our discussion with a focus on pure

text (txt) data as it has the fewest artifacts related to

formatting and can serve as a baseline for several

other types. After some experiments on network data,

we decided to work with finer-grain features of 64

bytes so, unless otherwise noted, the data is for B=64.

First, let us examine consider the relationship

between Hnorm and the FP rate. In other words, we

estimate empirically the conditional probability that a

feature is non-unique, given a certain entropy

number. The result is shown as a bar chart on Figure

2 (data has been aggregated by a factor of ten to

allow for proper chart display). We can see that, for

extremely low entropy scores, we get close to 100%

false positives. That number drops sharply and, for

scores of 200+, the probability stays below 10%, with

numbers staying below 5% for most of that interval.

To put these probabilities into perspective,

consider the overall fraction of features have a

particular entropy number. The line graph on Figure

2 gives the cumulative distribution of features as a

function of the entropy measure Hnorm. By and large,

it is good news—if we decide to drop from

consideration all features with a measure below 200,

for example, this would result in the elimination of

only 2.21% of the features from consideration. If we

moved the cut off point to 250—the first point where

FP rate drops below 0.05, we would still keep 97% of

the features.

Yet, the figure shows that, to the right, the FP

rate forms another little peak, which we may want to

also exclude from consideration. Obviously, the

lower we drop the FP threshold for inclusion, the

lower the overall (unconditional) FP rate, and the

larger the fraction of excluded features. To better

understand this relationship, on Figure 2 we have

shown the fraction of included features (coverage) as

a function of the selected threshold for values from

0.1 to 0.01.

The coverage stays almost constant for threshold

FP rates down to 0.07, with the corresponding

expected overall FP rate of about 0.035. As the

threshold drop from 0.06 to 0.03, coverage drops

from 0.80 to 0.47, with overall FP rate going from

0.025 to 0.011. Note that lower FP coverage is not all

bad—it serves as a natural compression by reducing

the number of features independently of other

compression techniques that may be used, such as

Bloom filters [1], [3]. If the search targets are large,

reducing FP rate may well outweigh some

imperfections in coverage. Below a threshold of 0.02,

we see a catastrophic collapse as the selection

scheme completely loses coverage.

 6

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 100 200 300 400 500 600 700 800

txt: H norm

F
 P

R
 a
 t
 e

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

D
 a
 t
 a

C
 D
 F

FP Rate

Data CDF

Figure 2 FP rate and data CDF for plain text

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

FP Threshold

O
v
e
ra
ll
 F
P
 R
a
te

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
e
a
tu
re
 C
o
v
e
ra
g
e

FP Rate

Coverage

Figure 3 Overall FP rate and feature coverage based on FP threshold

 7

We also examined the distribution of the

coverage for the threshold of 0.03 to understand how

frequently big gaps in the coverage occur. Since the

average distance between two selected features is

only 1.59 we used the histogram on Figure 3 to better

understand the behavior. It shows the cumulative

probability that the gap in coverage falls within a

particular interval. Inversely, we can infer the

probability that it is greater than any particular

number. For example, the probability that the gap

exceeds 1024 bytes is 1 on 100,000. It is evident that,

even when overall coverage drops in half, the local

coverage stays largely even, although notable but

infrequent gaps do occur.

Having established a baseline with plain text,

now consider the behavior of more complex data

types, such as html. Generally, we would expect for

html to be very similar given that it is designed to be

human-readable; however, it is of interest to see the

effects of common formatting on feature properties.

As Figure 4 clearly shows, the effect on FP rates

is quite dramatic. In particular, the FP rate never

drops below 0.027, and, with the exception of very

low entropy features, remains consistently higher

than the corresponding ones for plain text. While this

makes intuitive sense due to the fact that html

formatting brings more predictability into the

features, we have not seen such issues discussed in

the evaluation of similarity schemes. We should

emphasize that these results are very generic and, any

similarity scheme that picks features at random—as

all current ones effectively do—will see non-trivial

differences in its FP rates depending on the

underlying data.

5. Statistically Improbable Features

We could, of course, reproduce more charts for

the different file types; however, that would not

answer the question of how to utilize the presented

data for similarity discovery.

One possibility is to use the per-type FP charts

and pick features with the lowest FP rates. That

would, in principle, produce the lowest average FP

rates. However such features tend to be clustered—if

we estimate (based on the entropy measure) that a

feature will have a low FP, then the neighboring

features will have a very similar, or identical entropy

as they differ by one byte. Further, we would like a

scheme that produces nice coverage without the need

to calculate the hash of every single feature.

Our basic idea is to use the observed distribution

of the computed entropy estimates as the basis for

selecting statistically improbable features. For that

purpose, we associate a precedence rank with each

entropy measure value that is proportional to the

probability that it will be encountered. In other

words, the least likely feature as measured by its

entropy score gets the lowest rank, whereas the most

common one is assigned the highest. Assuming a

fixed feature size of length B, we can associate

precedence scores for all of the L-B features of an

object, where L is the size of the object. Features

eliminated due to too low/high score are assigned a

special null score to prevent their selection

altogether.

Next, we pick a window size of W and, for every

W consecutive rank scores, we select the leftmost

minimum score (this is a sliding window type of

calculation). All the while we keep count of how

many times every feature has been picked as the

minimum score. Thus, if a feature is picked k times (k

∈ [1..W]), it means that it is the local minimum

within a window of size W + k – 1 and can be viewed

as a measure of the relative local popularity of a

particular feature.

Finally, we pick a threshold parameter t and

select all features with k ≥ t as the fingerprinting

features of the object, and hash them using MD5.

Figure 5 illustrates the process for a 320-byte

snippet from a gz file (L = 320). For B = 64, we can

generate 256 consecutive entropy estimates and 256

corresponding rank scores (top chart). Note that the

entropy estimate changes minimally between

neighboring estimates, and generally stays within a

narrow range. However, every once in a while, it

drifts out of that range, and the rank score drops

sharply (around offsets 40 and 180 on the chart). This

usually results in a popular feature, although a drop is

not a necessary condition for high popularity (e.g.

offset 120). Figure 5 also shows that for a threshold

value of t = 16, four features would be selected from

the snippet, whereas t = 48 results in two features

being selected.

There are two obvious questions that arise in a

real implementation: Which distribution should we

choose to base our rankings on? Is there enough local

variability in entropy scores to support the heuristic

that local choices will tend to pick the same features?

In general, the first question is unlikely to have a

single correct answer. A simple generic solution is to

have a benchmark set and use it to set the ranks. This

could be customized by profiling actual traffic for the

specific deployment scenario. Yet, under any

circumstances, we can expect that traffic will non-

trivially deviate from our definition of typical so if

our method is too sensitive to that choice, it would be

less useful as it would result in fewer local

agreements on the choice of features. To compensate,

we would have to lower t to select enough features.

 8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 100 200 300 400 500 600 700 800 900

H norm

F
P
 R

 a
 t
 e

Figure 4 FP rate by entropy measure for HTML

0

100

200

300

400

500

600

700

800

900

1000

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

 10

 20

 30

 40

 50

 60

 70

t = 48

t = 16

P
op
u
la
ri
ty
 S
co
re

R
an
k
S
co
re

Offset
0

100

200

300

400

500

600

700

800

900

1000

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

 10

 20

 30

 40

 50

 60

 70

t = 48

t = 16

P
op
u
la
ri
ty
 S
co
re

R
an
k
S
co
re

Offset

Figure 5 Rank and popularity scores for a 320-byte snippet: L=320, B=64, W = 64

0

100

200

300

400

500

600

700

800

5 15 25 35 45 55 65 75 85 95

Data Overlap (%)

C
o
m
 m
 o
 n
 F
 e
 a
 t
 u
 r
 e
 s

64-16 64-24 64-32 64-40 64-48 64-56 64-64

Figure 6 Feature selection performance on random data

 9

Therefore, we could choose the doc distribution

as our reference point and use it on all the sets. Going

back to Figure 1, we can see that it almost serves as a

composite of the rest with several local peaks. Actual

data will effectively mask out parts of the ranking—

e.g. compressed data will have little use for entropy

ranks to the left of its bell, whereas text data will not

need anything to the right of its bell.

The answer to the second question is a confident

‘yes’—even random data exhibits a bell-shaped

distribution of entropy scores so even within a

relatively small of window of 64-128 bytes, a few of

the features are likely to stand out as statistically

improbable, relative to the rest.

6. Measuring File Similarity

We are now ready to go back to our original

problem of finding similar objects. To establish a

baseline measurement of the effectiveness of the

described methods, we ran a controlled experiment

using random data and known amounts of

overlapping content. Specifically, we used two

randomly generated files and produced mixed

versions of them in the following fashion: take x

percent of file #1 and mix with 100-x percent from

file #2. The mixing was done in blocks of 512 bytes

and we used 21 values for x: 0, 5, 10, …, 100. Note

that we selected the blocks at random so even the

100% case is not an identical file but a file containing

the same data block in a random permutation.

Further, we fixed W = 64, and varied t from 16 to 64

with a step of 8. Figure 6 summarizes the results.

As we can see from the chart, the number of

common features increases linearly with the increase

of the amount of data in common and the slope of the

increase is determined by the threshold parameter t.

Generally, a lower the value for t means that more

features are retained, whereas a higher value selects

fewer features and improves compression. In this

case, t = 16 retains an average (over the different

runs) of 847 features, whereas t = 64 only 110. Using

an MD5 hash to compress the feature representation

would mean that our storage requirements would be

13,552 and 7,040 bytes, respectively. This yields

corresponding compression ratios of 3.8:1 and 7.2:1

that can be further improved 10 times by using a

Bloom filter with 10 bits per element and 0.8% FP

rate. Further reductions are possible by selecting a

bigger value for W, such as 128, 256, 512.

The above results can readily be replicated for

compressed data types such as jpg, pdf, and gz. For

text, the results are quite similar for unrelated text,

however, things like style and common topic do tend

to yield higher results as the syntactic similarity

increases. Generally, the results for non-random data

need to be evaluated with respect a baseline FP rate,

which is relatively straightforward to obtain from a

representative set of files. Alternatively, one could

use the set to generate a set of duplicate features and

ignore them in the actual data.

A large-scale experimental validation of an early

prototype implementation on 4.6GB of real data

(Table 1) is the subject of a separate paper. In

summary, we were able to detect files within

simulated network traffic based on a single packet

with 0.9987 to 0.9844 accuracy (depending on file

type) for feature size of 64 and threshold of 16. Our

current implementation is capable of 100MB/s

sustained throughput on a quad-core processor—this

includes feature selection, feature hashing, and

comparison with a reference set. We expect that an

improved implementation would need no more than

two cores to sustain that rate.

7. Conclusions

In this paper, we presented a new approach to

selecting syntactic features for similarity

measurements. Our work makes the following

contributions:

• Through empirical data, we have shown that a

basic entropy measure can provide a valuable

guideline with respect to the uniqueness of a

particular feature.

• We have shown that different data types exhibit

different behavior and that similarity measures

can be tuned to keep a lid on overall false

positive rate.

• We proposed a new method for selecting

characteristic features that does not rely on a

Rabin scheme to be content-sensitive. Instead,

we use an entropy measure and empirical

distribution data to select statistically improbable

features.

• The new method is very stable and predictable

with the respect to the coverage it produces, and,

unlike previous work, can easily be tuned to the

underlying data.

In the immediate future we plan to full develop a

practical, high-performance tool that can be used to

correlate evidence on a large scale.

 10

8. References

[1] B. Bloom, “Space/Time Tradeoffs in Hash Coding

with Allowable Errors,” Communications of the ACM,

vol 13 no 7, pp. 422-426, 1970.

[2] S. Brin, J. Davis, H. Garcia-Molina. “Copy detection

mechanisms for digital documents”. In Proceedings of

the ACM SIGMOD Annual Conference, San

Francisco, CA, May 1995.

[3] A. Broder, M. Mitzenmacher, “Network Applications

of Bloom Filters: A Survey,” Internet Mathematics,

vol 1 no 4, pp. 485-509, 2005.

[4] A. Broder, S. Glassman, M. Manasse, and G. Zweig,

“Syntactic Clustering of the Web”. In Proceedings of

the 6th International World Wide Web Conference, pp.

393-404, 1997.

[5] M. S. Charikar. “Similarity Estimation Techniques

from Rounding Algorithms”. In Proceedings of the

34th Annual ACM Symposium on Theory of

Computing, 2002.

[6] C. Y. Cho, S. Y. Lee, C. P. Tan, and Y. T. Tan.

“Network forensics on packet fingerprints. 21st IFIP

Information Security Conference (SEC 2006),

Karlstad, Sweden, 2006.

[7] Henziger, M., “Finding Near-Duplicate Web Pages: A

Large-Scale Evaluation of Algorithms”, In

Proceedings of the 29th Annual International ACM

SIGIR Conference on Research & Development on

Information Retrieval, Seattle 2006.

[8] R. Karp, M. Rabin. "Efficient randomized pattern-

matching algorithms". IBM Journal of Research and

Development 31 (2), 249-260, 1987.

[9] A. Kirsch, M. Mitzenmacher, “Distance-Sensitive

Bloom Filters,” Proceedings of the Algorithms,

Engineering, and Experiments Conference (ALENEX

2006).

[10] J. Kornblum, “Identifying almost identical files using

context triggered piecewise hashing”, Proceedings of

the 6th Annual DFRWS, Aug 2006, Lafayette, IN.

[11] U. Manber. Finding similar files in a large file system.

In Proceedings of the USENIX Winter 1994 Technical

Conference, pages 1-10, San Fransisco, CA, USA,

1994.

[12] M. Mitzenmacher, “Compressed Bloom Filters”,

IEEE/ACM Transactions on Networks, 10:5, pp. 613-

620, October 2002.

[13] K. Monostori, R. Finkel, A. Zaslavsky, G. Hodasz, M.

Pataki, “Comparison of Overlap Detection

Techniques”. In Proceedings of the 2002 International

Conference on Computational Science, Amsterdam,

The Netherlands, (I) pp 51-60, 2002.

[14] M. Ponec, P, Giura, H. Brnnimann, J. Wein, “Highly

Efficient Techniques for Network Forensics, In

Proceedings of the 14th ACM Conference on

Computer and Communications Security, 2007,

Alexandria, Virginia.

[15] H. Pucha, D. Andersen, M. Kaminsky“. Exploiting

Similarity for Multi-Source Downloads using File

Handprints”. In Proceedings of the Forth USENIX

NSDI, Cambridge, MA. Apr, 2007.

[16] M. O. Rabin. “Fingerprinting by random

polynomials”. Technical report 15-81, Harvard

University, 1981.

[17] S. Rhea, K. Liang, and E. Brewer. Value-based web

caching. In Proceedings of the Twelfth International

World Wide Web Conference, May 2003.

[18] V. Roussev, Y. Chen, T. Bourg, G. G. Richard III,

“md5bloom: Forensic filesystem hashing revisited”,

Proceedings of the 6th Annual DFRWS, Aug 2006,

Lafayette, IN.

[19] V. Roussev, G. Richard III and L. Marziale, "Multi-

resolution similarity hashing", Proceedings of the

Seventh Digital Forensic Research Workshop, 2007.

[20] K. Shanmugasundaram, H. Bronnimann, N. Memon,

“Payload Attribution via Hierarchical Bloom Filters,”

Proceedings of the ACM Symposium on

Communication and Computer Security (CCS'04),

2004.

[21] N. Shivakumar and H. Garcia-Molina. “SCAM: a

copy detection mechanism for digital documents”. In

Proceedings of the International Conference on

Theory and Practice of Digital Libraries (June 1995).

[22] N. Shivakumar, H. Garcia-Molina, “Building a

scalable and accurate copy detection mechanism”. In

Proceedings of the ACM Conference on Digital

Libraries (March 1996), 160-168.

[23] N. Shivakumar, H. Garcia-Molina. “Finding near-

replicas of documents on the web”. In Proceedings of

the Workshop on Web Databases (March 1998), 204-

212.

[24] S. Schleimer, D. S. Wilkerson, and A. Aiken.

"Winnowing: local algorithms for document

fingerprinting. In SIGMOD '03: Proceedings of the

2003 ACM SIGMOD international conference on

management of data, pages 76-85, New York, NY,

USA, 2003. ACM Press.

