

Abstract

File carving is an important technique for
digital forensics investigation and for simple
data recovery. By using a database of headers
and footers (essentially, strings of bytes at pre-
dictable offsets) for specific file types, file carv-
ers can retrieve files from raw disk images, re-
gardless of the type of filesystem on the disk
image. Perhaps more importantly, file carving is
possible even if the filesystem metadata has
been destroyed. This paper presents some re-
quirements for high performance file carving,
derived during design and implementation of
Scalpel, a new open source file carving applica-
tion. Scalpel runs on machines with only mod-
est resources and performs carving operations
very rapidly, outperforming most, perhaps all, of
the current generation of carving tools. The re-
sults of a number of experiments are presented
to support this assertion.

Keywords: digital forensics, file carving, high
performance computing, data recovery

1 Introduction

A wide variety of digital forensics tools,
both commercial and open source, are currently
available to digital forensics investigators. The
purpose of these tools is to provide layers of ab-
straction that allow investigators to safely make
copies of digital evidence and perform routine
investigations, without becoming overwhelmed
by low level details, such as physical disk or-
ganization. One of the most important tools in a
digital forensics investigator’s toolbox is a file
carver.

File carvers read databases of headers and
footers, which are strings of bytes at predictable
offsets, and search one or more target disk im-

ages for occurrences of the headers and footers.
The goal is to identify the starting and ending
locations of files in the disk images and “carve”
(copy) sequences of bytes into regular files. Ad-
ditional file-type specific rules may apply, for
example, to associate the footer closest to a dis-
covered header or farthest away from the header
or inclusion or exclusion of the footer in the
carved file.

File carving is a particularly powerful tech-
nique because files can be retrieved from raw
disk images, regardless of the type of filesystem.
File retrieval is possible even if the filesystem
metadata has been completely destroyed. For
example, a file deposited on a FAT partition can
often be recovered even if the partition is refor-
matted as NTFS, then ext2, then FAT again,
even if bad block checks (which are generally
read-only operations) are applied. While a file-
system’s metadata can be quite fragile, file data
is much more resilient.

One limitation of the current generation of
automatic file carvers is that a file’s data must be
contiguous to be carved properly. With some
manual intervention or additional work [5], even
non-contiguous data can be carved, but luckily,
modern filesystems, such as ext2/3 (for Linux)
and NTFS (for Windows), are actually quite
kind to file carvers. This is because they strive
to perform disk allocation which minimizes file
fragmentation, in order to reduce seek time and
improve filesystem performance. Even under
legacy filesystems such as FATx, which are
prone to fragmentation, the data of many files of
modest size is likely to be unfragmented. This is
because file fragmentation, if present, is on clus-
ter boundaries and cluster sizes under FATx tend
to be rather large.

This paper discusses some issues for opti-
mizing file carving operations and describes

Scalpel: A Frugal, High Performance File Carver

Golden G. Richard III
Vassil Roussev

Department of Computer Science
University of New Orleans
New Orleans, LA 70148

Contact: golden@cs.uno.edu

 1 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

Scalpel, a new open source file carving applica-
tion. The primary benefits of Scalpel over the
current generation of file carvers is that it oper-
ates rapidly, even on legacy hardware with lim-
ited memory.

The motivation for the development of Scal-
pel is several-fold. First, current generation file
carvers tend to perform poorly unless substantial
resources are available on the machine perform-
ing carving operations. This is simply unneces-
sary, as the paper will demonstrate. The second
reason is that, as forensic targets grow in size
and the backlogs of law enforcement (and pri-
vate) digital forensics laboratories grow, we
simply must expect our tools to squeeze every bit
of performance out of the computing equipment
we have available. Many of the strategies em-
ployed in development of high-performance op-
erating systems can be applied to digital foren-
sics tools, including minimizing memory-to-
memory copying and elimination of unnecessary
disk I/O.
2 File Carving Strategies

In the absence of metadata providing a
complete description of the contents of a set of
disk images, file carving requires one or more
complete passes over each image. Since a file
header may appear anywhere in a disk image, a
limiting factor on performance is the total num-
ber of bytes to read a disk image once, Tread.
Tread is constant for all carving strategies and
cannot be substantially reduced through clever
optimization. In addition, other factors affect the
minimum cost: the time to search for headers,
footers, and relevant strings, memory-to-
memory copy operations, and the total number
of bytes written for carved files, Twrite. To
maximize the performance of a file carving ap-
plication, a few guiding principles are appropri-
ate. Most are common programming “sense”,
but are very important in file carving because of
the huge amounts of data these applications must
move. In a review of existing open source file
carvers and in the design of Scalpel, the follow-
ing principles were compiled:
• The amount of time searching for headers

and footers (once the data is read from the
disk image) should be minimized. This
means employing a fast string search algo-
rithm and minimizing unnecessary searches

(for example, not searching for footers for
which no viable header has been found).

• Memory-to-memory copies should be mini-
mized. File carvers copy billions (and soon,
trillions) of bytes of data. Even though disk
operations are orders of magnitude slower
than memory copies, excessive memory-to-
memory copies do reduce performance. If
possible, data should be written to carved
files directly from the buffer used for reads
against the disk image. These are lessons
learned from design of high-performance
operating systems.

• Twrite should minimized by carving the small-
est number of files that meet the needs of the
investigator. Since write operations on me-
chanical disks are particularly expensive,
only those blocks of data in the disk image
which match the search specifications pro-
vided to the file carver should be written.
This precludes an approach where, for ex-
ample, carving operations begin whenever a
footer is discovered, but the carved “file” is
discarded when no suitable footer is found.
Assuming that these principles are applied,

then the performance of a file carver will depend
heavily on the number of passes (including par-
tial ones) over each disk image. Said another
way, the number of bytes read to accomplish the
carving must be minimized—the multiplicative
factor for Tread must be as small as possible. A
secondary consideration is that, all other things
being equal, sequential passes over the disk im-
age will likely be faster than many randomly
ordered reads, for two reasons. First, modern
filesystems perform block read-ahead and these
read-ahead facilities are interrupted by non-
sequential reads. Second, total seek time is re-
duced.

2.1 A New Carver: Scalpel
In this section, the design and implementa-

tion of Scalpel, a new, open source file carver,
are presented.

2.1.1 Design Considerations
Scalpel is a high performance file carver

with three primary design requirements. The
requirements, in decreasing order of importance,
are:
• Frugality. The file carver should run on

machines with minimal resources. The tar-

 2 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

get platform is a Pentium 2 class machine w/
512MB (or less) of RAM, running a boot-
able Linux distribution, such as Knoppix [4],
Knoppix STD [9], or Helix [10]. On such a
machine, Scalpel should be able to carve
files of any type and of any maximum size,
subject to available disk space.

• High performance. Scalpel should perform
file carving as quickly as possible, without
compromising the accuracy of carving op-
erations.

• Support for distributed implementation. The
basic techniques in the file carver should be
readily adaptable to a distributed, cluster-
based digital forensics platform, such as that
described in [3]. Such platforms may sup-
port caching most or all of the disk image in
RAM, which should speed carving opera-
tions substantially.
Scalpel’s existence, then, is motivated pri-

marily by a desire to quickly carve files of arbi-
trary size on machines with modest resources.
Since file carving is a non-interactive, I/O bound
task, there is little reason to dedicate expensive
computing resources, which might be used for
other purposes, to file carving. A Pentium class
machine, equipped with a modest amount of
RAM and a modern disk interface should per-
form adequately. Section 3 shows that Scalpel
meets both the first and second goals. The third
goal has been met, but discussion is beyond the
scope of this paper. The authors are currently
incorporating Scalpel into their distributed digi-
tal forensics framework and these results will be
published in a future paper.

2.1.2 Scalpel Internals
Scalpel reads a configuration file on startup

that defines the types of files that should be
carved and for each file type, additional infor-
mation, including the specifications of the
header and footer strings and the maximum file
size for the type.

To perform file carving, Scalpel makes
only two sequential passes over each disk image.
The first pass reads the entire disk image in large
chunks (of user-definable size, with a default
size of 10MB). Each chunk is searched for file
headers and a database of the locations of these
headers is maintained. Once the current chunk’s
header indexing is complete, a search is per-
formed for footers. For a particular file type for

which a footer is defined, a footer search is con-
ducted against the current chunk only if the
footer might potentially match some header in
the file. This is possible under two conditions.
The first is if a potentially matching header was
discovered in the current chunk of the disk im-
age. The second is if a potentially matching
header was discovered in a previous chunk of
the image file, but close enough to the current
position to meet the requirements of the maxi-
mum carve size for the file type. The location of
each matching footer is stored.

Once the first pass over the disk image is
complete, Scalpel has a complete index of
header and footer locations, which is used to
populate a set of work queues that control file
carving operations during the second pass over
the disk image. For each file header in the in-
dex, an attempt is made to match the header with
an appropriate footer, subject to rules in the con-
figuration file. One work queue is associated
with each chunk of a disk image and for a single
file to be carved, each queue contains at most
one of the following record types:

• STARTCARVE: A file carving operation
begins in this chunk. The starting loca-
tion in the chunk corresponds to the lo-
cation of the header for the file in the
disk image. The file to be carved is
opened and the initial portion of the file
is written.

• STARTSTOPCARVE: A file carving
operation begins and ends in this chunk.
The file is opened, some portion of the
current chunk is written, and the file is
closed.

• CONTINUECARVE: A file carving op-
eration spans this chunk. The entire
contents of the chunk is written to the
file being carved and the file remains
open.

• STOPCARVE: A file carving operation
ends in this chunk. Some portion of the
chunk is written to the file being carved
and the file is closed.

During the second pass over a disk image,
Scalpel again processes the disk image in chunks
(of the same size used in the first pass). As de-
scribed above, each chunk has an associated
work queue, which describes carving operations

 3 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

to carry out when that chunk is read. The use of
work queues is illustrated with a brief example
in Figure 1. In this example, a 38MB disk im-
age is examined, which contains two files, a
small JPG and a larger MPG file. The first pass
has already built the header and footer data-
bases. For the JPG, the header at byte 1,500 is
paired with the footer at byte 6,500. For the
MPG, the header at position 9,000,000 is paired
with the footer at position 26,000,000. A single
STARTSTOPCARVE entry is deposited in the
queue for chunk 0 of the disk image correspond-
ing to the complete carving operation for the
JPG file. A STARTCARVE entry is placed in
the chunk 0 work queue for the MPG file, which
will cause carving to begin at byte 9,000,000
during processing of chunk 0. The CON-
TINUECARVE entry deposited in chunk 1’s

work queue will result in writing the entire
chunk to the MPG file. Finally, when chunk 2 is
processed, the STOPCARVE entry will copy the
first 6MB of chunk 2 into the MPG file and
close the file. The last chunk of the disk image
is completely skipped on the second pass, be-
cause its work queue is empty.

The motivation for the use of work queues
is to make maximal use of the data in each
chunk of the disk image when it is read. No ex-
traneous memory-to-memory copies are per-
formed—writes to carved files are performed
out of the same buffer used to hold the current
chunk of the disk image. To further reduce disk
activity during the second pass over the disk im-
age, Scalpel uses seek operations to skip con-
secutive chunks for which no work is scheduled.

JPG
headers: 1,500
footers: 5,000, 6,500

MPG
headers: 9,000,000
footers: 26,000,000

GIF
headers: none
footers: none

38MB DISK IMAGE

STARTSTOPCARVE
start: 1,500
stop: 6,500
name: small.jpg

STARTCARVE
start: 9,000,000
name: movie.mpg

CONTINUECARVE
name: movie.mpg

STOPCARVE
stop: 26,000,000
name: movie.mpg

NULL

w
or

k
qu

eu
es

Header/footer database

chunk boundary
(10MB)

chunk boundary
(10MB)

large MPG small JPG

Figure 1. Work queues in Scalpel. Each 10MB chunk of an image file is assigned a work
queue, which contains a sequence of records that define carving operations for that chunk
during Scalpel’s second sequential pass over the image file.

 4 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

This often results in dramatic speedup over sim-
ply reading each chunk in the second pass.

2.1.3 Analysis of Scalpel
The lower bound on the number of bytes

read by Scalpel is Tread, which corresponds to
one pass over the disk image in which no head-
ers are discovered. In this case, the second pass
is eliminated entirely, because there is nothing to
carve. In the worst case, Scalpel’s read per-
formance is 2 * Tread, which corresponds to a
second pass in which each 10MB chunk is in-
volved in at least one file carving operation.
Scalpel minimizes Twrite by never writing carved
files unless the associated data meets all of the
requirements imposed by the configuration file
for a particular file type.

Considering memory usage, the first design
goal for Scalpel dictates that it execute correctly
on machines with limited resources. Scalpel’s
largest dynamic memory allocation is the buffer
used to hold “chunks” of an image file as it is
carved, by default, 10MB. The work queues
used by Scalpel consume only a small amount of
memory, even for large carve sets. As such, it
operates well on machines with modest amounts
of RAM and no swap space.

2.2 Foremost 0.69
One of the widely used open source file

carvers is Foremost [6]. Foremost has been in
use for several years and was used as a basis for

the development of Scalpel. They still share
some basic functions, such as the configuration
file parser.

Foremost performs all carving operations
during a “single” pass over a disk image, reading
the disk image in chunks (default size in 0.69 is
10MB). The carving strategy is illustrated in
Figure 2. When Foremost discovers a header in
the current chunk, it determines if the current
chunk contains enough data beyond the header
to accommodate the maximum carve size for
any file type. If not, an additional disk read is
performed to build an in-memory buffer contain-
ing the header and enough data to accommodate
the maximum carve size for any file type. If the
file type corresponding to the header has a de-
fined footer, a search is undertaken to discover a
matching footer in the buffer. If a footer is
found, then the portion of the buffer between the
header and footer is written to a file and the
carving operation for the file is complete. For
file types with no defined footer, the entire
buffer is written. Once this single file carving
operation is complete, the buffer is discarded
and processing continues sequentially from just
past the position of the discovered header.

38MB DISK IMAGE

search search

additional read

chunk boundary
(10MB)

small JPG large MPG

Figure 2. Simplified view of Foremost 0.69 file carving strategy. A disk image is processed in
chunks, with the default size being 10MB. When a header is discovered, the maximum carve
size is used to calculate how far away from the header the footer (or the maximum file size)
might be. There are two possibilities. If the end of the file is completely inside the current
chunk (refer to the small file, above), then no additional reads for this file carving operation are
needed. If the end of the file might be outside the current chunk (as in the large file, above),
Foremost performs an additional read to build a buffer beginning with the header and whose
length is the maximum carve size for any file type.

 5 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

2.2.1 Analysis of Foremost
Foremost reads k * Tread bytes to process a

disk image, where k ≥ 1. Beyond a single pass
over the disk image, which costs Tread, Foremost
performs additional reads, with the quantity de-
pending on the number of headers discovered
and the frequency of complete files to be carved
appearing entirely in the current chunk of the
disk image. An analytical derivation of k is dif-
ficult to obtain, but some experimental results,
obtained by instrumenting a copy of Foremost
0.69, shed some light. In the experiments de-
scribed in the next section, the factor k was be-
tween 1 (for carving an empty disk image) and
45. This means that the amount of data read by
Foremost is in some cases equivalent to tens of
passes over the disk image, in the worst case
observed in the experiments, equivalent to 45 *
Tread bytes. The reason that the performance
differential between Foremost 0.69 and Scalpel
is generally only a small constant factor and not
on the order of k / 2 (since Scalpel performs ex-
actly full two passes, in the worst case) is be-
cause many of the reads performed by Foremost
are overlapping. These reads are generally
served by the filesystem cache, reducing but not
eliminating their cost. With large maximum
carve sizes, however, Foremost’s performance
suffers. Because many of the reads are non-
sequential, they may also disturb operating sys-
tem-level read-ahead mechanisms.

Foremost has a substantial memory re-
quirement. In particular, a malloc() call at the
point of each header discovery allocates a block
of dynamic memory equal in size to the maxi-
mum carve size for any file type defined by the
configuration file. This means that Foremost
0.69 is incapable of carving a file whose size is
greater than the available virtual memory at the
point of header discovery. While this isn’t as
problematic on machines with large amounts of
RAM, it will be troublesome if very large files
are carved. There is also a large memory-to-
memory copy at the point of header discovery.
Unfortunately, the large memory requirements
of Foremost preclude using it to carve even
moderate-sized files on modest machines run-
ning without swap space (e.g., an older box
booted using Knoppix).

A new version of Foremost, 1.0beta, which
incorporates some new features, was released as

this paper was completed. As this beta version of
Foremost appears to be a complete rewrite and
in some limited testing does not yet perform all
file carving operations correctly, no detailed per-
formance study for 1.0beta was conducted. A
comparison between a stable version of Fore-
most 1.0 and Scalpel is the subject of future
work.
3 Experimental Results

3.1 Linux
This section presents the results of a num-

ber of experiments designed to validate the cor-
rect operation of Scalpel and to test its perform-
ance. Foremost 0.69, described in the last sec-
tion, is used as a basis for comparison, for two
reasons. The first is that it is widely used and
the author has personal experience with its gen-
eral accuracy in performing file carving. The
second is that Foremost 0.69 is open source.
This is a crucial point, because it allowed a thor-
ough investigation of the file carving strategy,
which provided some of the insights that fueled
development of Scalpel. Carrier [7] and Ken-
neally [8] each make convincing arguments for
the open source case in the digital forensics
arena. It’s a complicated issue and troublesome
economic factors enter the debate for software
developers who don’t have other means of buy-
ing food, but in this case rapid development of a
new tool (Scalpel) was made possible because
the developers of Foremost open sourced their
own carving tool.

The experiments described below include a
number of different types of carving operations,
varying both the types of files carved and the
maximum sizes for carving operations. There
are some minor differences in the default behav-
iors of Scalpel and Foremost that bear mention.
The first is that by default, Scalpel does not
carve files whose footers are not found within
the defined maximum carve size for a file type.
Foremost always performs carving, truncating
the carve at the maximum file size, even if a
matching footer isn’t discovered. The “-b”
command line option for Scalpel is for Foremost
compatibility and results in carves always being
performed, with a note in the Scalpel log file
that the file is truncated. Another issue is that
Foremost 0.69 doesn’t detect all headers [foot-
ers] when the headers [footers] for a particular
file type overlap in the disk image. A Scalpel

 6 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

command line option, “-r”, causes Scalpel to use
only the first occurrence of overlapping headers
[footers], mimicking Foremost’s behavior. In
the tests below, these command line options
were used to force Scalpel to emulate Foremost,
so that a more accurate performance comparison
might be made.

The current version of Scalpel reads exactly
the same configuration file format as Foremost
0.69 and so in all cases, exactly the same con-
figuration files were used for the runs of Fore-
most 0.69 and Scalpel 1.5. MD5 hashes of all
files carved were compared. In all cases, the
sets of files carved were exactly the same for
Scalpel and Foremost 0.69.

Experiments under Linux were conducted
on two machines, whose relevant specifications
are given below. In the tables, these machines
are referred to as “P2-350” and “T40p”:
P2-350:
350MHz Pentium 2 with 512MB of RAM
and no swap space.
4 port ATA-133 IDE controller, 7200rpm
80GB drive for holding carve results.
Operating System: Knoppix 3.7.
T40p:
Thinkpad T40p, 1.7GHz Pentium M, with
2GBof RAM and 4GB of swap space.
7200rpm 60GB drive.
Operating System: RedHat 9 with upgraded
2.40.20 kernel.

The T40p was the development machine for
Scalpel and the tests on this machine are rather
simple. These tests are representative of those
used to guide the design of Scalpel’s carving
strategy. Most of the substantial carving ex-
periments were performed on the P2-350, which
is a much less powerful machine, since this sort
of machine provides greater bang for the carving
buck.

The following tables illustrate the differ-
ence in performance between Scalpel and Fore-
most under a number of different carving scenar-
ios. Each carving operation was performed mul-
tiple times and the median time chosen as repre-
sentative. In all cases, the machines were idle,
except for the carving tests, and no network
connections were active.

Scalpel 1.5 (20MB max) 13s

Foremost 0.69 (1MB max) 12s

Foremost 0.69 (5MB max) 42s

Foremost 0.69 (10MB max) 57s

Foremost 0.69 (20MB max) 1m43s
Table 1. Carving results for 512MB USB key image
on T40p. Carving parameters: 1MB / 5MB / 10MB /
20MB JPG and DOC. ~1,100 files carved.

Scalpel 1.5 24s

Foremost 0.69 2m0s
Table 2. Carving results for 512MB USB key image
on T40p. Carving parameters: 20MB JPG, 20MB
DOC, 100K BMP, 4MB AVI, 1MB ZIP. ~1720 files
carved.

Scalpel 1.5 34s

Foremost 0.69 34s
Table 3. Carving results for 1.1 GB NULL image
(zeroed drive image) on Thinkpad T40p. Carving
parameters: 20MB max JPG + Microsoft Office. 0
files total carved.

Scalpel 1.5 (10MB max) 11m27s

Foremost 0.69 (1.2MB max) 8m59s

Foremost 0.69 (5MB max) 12m19s

Foremost 0.69 (10MB max) 12m47s
Table 4. Carving results for 1.2 GB FAT32 (from e-
bay) on P2-350. Carving parameters: 1.2/5/10MB
JPG. ~2,200 files carved.

Scalpel 1.5 18m36s

Foremost 0.69 23m18s
Table 5. Carving results for 1.2 GB FAT32 (from e-
bay) on P2-350. Carving parameters: 10MB GIF,
10MB JPG, 10MB AVI, 10MB MPG, 10MB DOC,
50K HTML, ~5,000 files carved.

 7 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

Scalpel 1.5 1h33m10s

Foremost 0.69 6h21m54s
Table 6. Carving results for 8GB raw drive (un-
known source, no partition table) on P2-350. Carv-
ing parameters: 10MB GIF, 10MB JPG, 10MB AVI,
10MB MOV, 10MB MPG, 100K BMP, 5MB DOC,
50MB PST/OST, 50K HTML, 5MB PDF, 200K
WAV, 1MB RealAudio, 10MB ZIP. ~52,000 files
carved.

Scalpel 1.5 2h40m39s

Foremost 0.69 9h50m31s
Table 7. Carving results for 40GB NTFS (from a
UNO laboratory) on P2-350. Carving parameters:
10MB JPG, 50MB AVI, 10MB DOC, 50K HTML,
5MB PDF. ~ 72,000 files carved.

Scalpel 1.5 43m20s

Foremost 0.69 ---------
Table 8. Carving results for 80GB drive on P2-350.
Carving parameters: 1GB max Outlook.1 files total
carved.

Table 1 shows the results of carving a
512MB USB key image on the T40p. In this
test, JPG + DOC files are carved, with maxi-
mum sizes of 1MB, 5MB, 10MB, and 20MB.
Scalpel is insensitive to small differences in
user-specified maximum carve sizes, so only the
results for the 20MB maximum size are shown.
For the 1MB size, Foremost is marginally faster.
The speed of Foremost degenerates as the
maximum carve size is increased. This is be-
cause a larger maximum size increases the like-
lihood that a footer search must extend beyond
the current chunk of the disk image, which
causes Foremost to issue additional read opera-
tions.

Table 2 includes results for the same USB
key image, but carving a number of file types,
whose maximum sizes are given in the caption.
Scalpel is roughly 5X faster than Foremost 0.69
in this test.

Table 3 is a simple throughput test on a ze-
roed disk image. This mirrors the case where a
drive image contains nothing of interest—for
example, it might be new or it might have been

forensically sanitized. As expected, Scalpel and
Foremost 0.69 have identical performance, since
their strategies diverge only when a matching
header is found in a disk image.

Table 4 provides results for JPG-only
carves on a 1.2GB drive obtained from e-bay. In
this experiment, the P2-350 was used. Scalpel is
outperformed by Foremost 0.69 only with a
maximum carve size of 1.2MB, where Foremost
issues only 263MB of additional read operations
beyond the 1.2GB required to read the entire
disk image once. For the 5MB and 10MB maxi-
mum carve sizes, Foremost issues 4.9GB and
21GB of additional reads, respectively.

Table 5 shows results for carving a number
of file types from the same 1.2GB drive. The
types carved are listed in the caption. Foremost
issues 48GB of reads beyond the 1.2GB required
to read the disk image a single time.

The results in Table 6 are for carving an
8GB drive of unknown origin using the P2-350.
The drive’s partition table is wiped out, but the
drive operates correctly. A number of file types
of various maximum sizes are carved. Scalpel
performs the carve operations significantly
faster—saving almost 5 hours of processing
time. Again, this is possible because Scalpel
strives to minimize disk I/O, while Foremost
0.69 performs 238,270,750,000 bytes of reads in
addition to its single pass over the 8GB image.
As the number of types and maximum sizes for
carved files increases, the performance of Fore-
most falls farther behind that of Scalpel.

In Table 7, results are presented for carving
a 40GB drive. In this example, a large 50MB
cap on AVI-format video files is allowed. Scal-
pel performs the carving operation in approxi-
mately ¼ the time required by Foremost, saving
over 7 hours of processing time. In this experi-
ment, Foremost performs 117,622,357,936 bytes
of additional reads in addition to a single pass
over the 40GB image.

The final test under Linux, whose results
appear in Figure 8, is particularly important. In
this test, an 80GB drive image is searched for
large (maximum: 1GB) Outlook email archives.
On the 512MB RAM P2-350, Foremost 0.69 is
unable to complete the operation—it crashes
with a segmentation fault when an Outlook file
header is discovered, because 1GB of dynamic
memory cannot be allocated when the single

 8 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

matching header is discovered. Scalpel carves a
single Outlook email box from the 80GB drive
image in 43 minutes, 20 seconds. The logical
size of the Outlook email box was roughly
600MB, though a full 1GB was carved because
no footer was specified for Outlook in the con-
figuration file.

These results indicate that, except in cases
where only a small number of modest-sized files
are carved, Scalpel performs much faster than
Foremost 0.69 and will run on a significantly
less powerful machine.

3.2 Windows XP
In order to compare Scalpel to other file

carvers, a very limited test was performed under
Windows XP. This experiment duplicates the
carving operations performed in Table 6 on a 3
GHz Pentium 4 with 2GB RAM and dual 72GB
15K rpm SCSI drives. A Win32 compilation of
Scalpel, using the MinGW version of gcc 3.4.2,
FTK v1.50b, FTK v1.60, and WinHex 12.1 were
used. The results appear in Table 9.

Scalpel 1.5 1h10m15s

WinHex 12.1 1h12m0s

FTK 1.50b 1h36m0s

FTK 1.60 2h10m0s

Table 9. Carving results for 8GB raw drive (un-
known source, no partition table) on P4-3GHz. Carv-
ing parameters: 10MB GIF, 10MB JPG, 10MB AVI,
10MB MOV, 10MB MPG, 100K BMP, 5MB DOC,
50MB PST/OST, 50K HTML, 5MB PDF, 200K
WAV, 1MB RealAudio, 10MB ZIP. ~52,000 files
carved.

WinHex’s file carving facility is most com-

parable to Scalpel. In this limited test, Scalpel is
only marginally faster than WinHex 12.1. The
number of files carved was comparable enough
to measure carving performance, but some
anomalies were noted. First, for some file types,
WinHex modifies user-specified limits on
carved file sizes, as described in the WinHex
documentation. This makes a direct comparison
(e.g., by using MD5 hashes) between the files
carved by Scalpel and WinHex difficult, because
WinHex’s carving strategy is proprietary. How-

ever, for most file types, the number of files
carved was very close and a visual check indi-
cated that, for image files at least, the same file
sets were carved. The performance of WinHex
on modern hardware is excellent and the results
agree for the most part with Scalpel.

FTK’s carver is very limited, supporting
only a small number of predefined file types,
whose headers/footers are discovered during the
“Add Evidence” preprocessing phase. The tim-
ing provided in Table 9 for FTK covers only
BMP, GIF, JPEG, PDF, HTML, and OLE (Of-
fice documents) and includes FTK’s “Add Evi-
dence” preprocessing phase (with the minimum
number of options permissible for data carving
to be supported), data carving, and file export.

Since FTK provides no control over maxi-
mum carve sizes, headers, or footers and per-
forms some extra work in the preprocessing
phase that isn’t performed by the other file carv-
ers in the test, it is impossible to directly com-
pare Scalpel’s performance with FTK. Even so,
a general comparison is possible. The perform-
ance of FTK’s file carving facility is poor com-
pared to Scalpel and WinHex, especially in light
of the number of file types not being carved.

An alarming situation was noted in carving
the 8GB image under FTK 1.50b. FTK carved
3,463 GIF files. WinHex 12.1, Scalpel 1.5 (un-
der both Windows and Linux) and Foremost
0.69 (under Linux) each carved exactly 4,817
GIF files. In some cases, the lengths of the GIFs
carved by WinHex were different than those
carved by Scalpel and Foremost, but in a thumb-
nail viewer, it was easy to verify that the sets of
files carved were largely the same. Furthermore,
the great majority (but not all) of the MD5
hashes between the Scalpel and WinHex carve
sets matched. Approximately 400 of the GIFs
carved by Scalpel/WinHex/Foremost could not
be viewed and were likely not actually GIF for-
mat (e.g., they were binary garbage with appro-
priate “GIF” headers and footers). But of the
3,463 GIF files carved by FTK, 2,442 of the
files were exactly 783 bytes in length. None of
the files of 783 bytes in length were viewable—
all were corrupt. Furthermore, neither Scalpel,
Foremost, nor WinHex carved a single GIF file
of 783 bytes in length.

This problem appears to be fixed to some
degree in FTK v1.60, which carved 4,194 GIF

 9 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

files, approximately 100 of which were corrupt.
FTK may be employing a filter to avoid carving
corrupted GIFs. It is possible that this filter is
overzealous, but a substantial amount of addi-
tional testing is required to draw any strong con-
clusions. What is clear is that an upgrade to
v1.60 is critical for anyone using FTK for file
carving and the output from FTK should be
compared to another file carver.

3.3 Scalpel Performance Summary
Scalpel carves exactly the same set of files,

for a given configuration file, under both Linux
and Windows XP. While Scalpel has no optimi-
zations for the Windows platform, note that the
performance difference between the P2-350 (es-
sentially, a throw-away box, worth less than
$200) running Linux and the high-end P4 ma-
chine (> $3,000, with 15K SCSI disks) running
XP is not substantial.
4 Conclusions and Future Work

File carving is an important digital forensics
technique and has applicability beyond digital
investigation, e.g., in simple data recovery.
Many file carving applications are currently
available, but to the author’s knowledge, none
(except Scalpel, presented in this paper) are able
to quickly perform file carving operations of
arbitrary size on machines with modest re-
sources.

Scalpel is a new open source file carver,
sharing some code with Foremost 0.69, but em-
ploying a significantly different, highly opti-
mized carving strategy, which avoids unneces-
sary memory-to-memory copies and disk I/O.
Scalpel performs at most 2 sequential passes
over an image file to complete a set of user-
defined carving operations and exhibits excellent
performance on Pentium class hardware with
modest amounts of RAM and no swap. Detailed
experiments were conducted to illustrate the per-
formance of Scalpel.

Several enhancements to Scalpel are cur-
rently underway. One is more accurate header
analysis, in the style of the Unix file command.
This requires some care, because over-zealous
scrutiny of file formats may result in carving
operations not being performed when the “incor-
rect” file data (perhaps due to an overwritten
block, for example) may be only slightly dam-
aged and in fact, usable. We are also incorporat-
ing Scalpel’s file carving techniques into our

framework for distributed digital forensics, to
speed carving operations on very large images.
It may be possible to speed up the Windows ver-
sion of Scalpel further—this is currently an open
issue. Finally, we want to compile and test
Scalpel on other Unix platforms, including Mac
OS X.

In the future, we hope that collaboration
with researchers working on next-generation
digital forensics techniques, such as automated
reassembly of fragmented documents (e.g., [5]),
which are beyond the capabilities of the current
generation of “generic” file carvers, will yield
even more powerful file carving applications.

The latest version of Scalpel, including
source code and a Windows executable, is avail-
able at:

http://www.digitalforensicssolutions.com/Scalpel

Comments, feedback, bug reports, and sug-

gestions for additional features are welcome and
should be addressed to golden@cs.uno.edu.

5 References
[1] WinHex 12.1, available at

http://www.winhex.com
[2] Forensic Toolkit (FTK), available at

http://www.accessdata.com.
[3] V. Roussev, G. G. Richard III, “Breaking the Per-

formance Wall: The Case for Distributed Digital
Forensics,” Proceedings of the 2004 Digital Fo-
rensics Research Workshop (DFRWS 2004), Bal-
timore, MD.

[4] Knoppix: A Live Linux CD based on Debian
GNU/Linux, available at
http://www.knoppix.net.

[5] K. Shanmugasundaram, “Automated Reassembly
of Fragmented Images,” Proceedings of the
IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2003.

[6] Foremost 0.69/1.0beta, available at
http://foremost.sourceforge.net/

[7] B. Carrier, “Open Source Digital Forensics
Tools: The Legal Argument,” @stake Research
Report.

[8] E. Kenneally, “Gatekeeping Out of the Box:
Open Source Software as a Mechanism to Assess
Reliability for Digital Evidence,” Virginia Jour-
nal of Law and Technology 13 (2001).

[9] Knoppix Security Tools Distribution (STD),
http://www.knoppix-std.org/.

[10] Helix Live CD,
http://www.e-fense.com/helix/.

 10 2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

http://www.digitalforensicssolutions.com/Scalpel
http://vip.poly.edu/kulesh/research/pubs/icassp-2003.pdf
http://vip.poly.edu/kulesh/research/pubs/icassp-2003.pdf

	Introduction
	File Carving Strategies
	A New Carver: Scalpel
	Design Considerations
	Scalpel Internals
	Analysis of Scalpel

	Foremost 0.69
	Analysis of Foremost

	Experimental Results
	Linux
	Windows XP
	Scalpel Performance Summary

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

