
Integrating XML and Object-based Programming for Distributed Collaboration

Vassil Roussev, Prasun Dewan, Naveen Koorakula, Sriram Sellappa
University of North Carolina

{roussev, dewan, naveen. sriram}@cs.unc.edu

Abstract
In this paper, we explore some of the new opportunities
for distributed collaborative applications that emerge from
the use of XML as a data specification language. We
present two different approaches: the first one
transparently adds asynchronous collaboration to
applications whose persistent state is in XML format,
while the second one helps build synchronous
collaborative applications starting with an XML schema
specification.
Although the two approaches start with different
assumptions, they both lead to the same proble-the
need for a generic one-to-one conversion between objects
and XML constructs. Using object properties, we define
two variants of a conversion scheme for the two
approaches.

Introduction
Experience shows that writing distributed multi-user
applications is a non-trivial task and involves a number of
issues not raised by single-user applications. The added
complexity stems primarily from the need to coordinate
the actions of a group of users working on a common
task. Furthermore, the coordination mechanisms must be
flexible enough to allow the collaborators to effectively
cooperate in a number of different situations where
computer aid is desirable.
To illustrate the needs of distributed collaboration, let us
consider a simple example of collaborative editing. Users
A and B are planning to write a paper together but would
like to do it over the Internet as they live far apart. They
could cooperate by sending each other emails with their
respective versions of the document. However, this
implies that they would have to rely entirely on social
protocol to ensure the consistency of the document, and
would have to manually reconcile different (and
potentially conflicting) versions of it. Instead, they would
like to have a collaborative environment where they could
work on the paper simultaneously and have an automated
mechanism that can ensure consistency and help resolve
conflicts.
The development of collaborative applications from the
ground up is a costly and error-prone process. Therefore,
we need software infrastructures to support this process,

as well as simple and intuitive abstractions that can be
presented to the user. Ideally, the infrastructures should
also be compatible with existing standards.
Traditionally, many distributed collaborative systems
have been built around the notion of sharing. The basic
idea behind sharing is to give each user a copy of the
shared entity and to guarantee a certain level of
consistency among these copies. In general, users are
most familiar with two types of entities on their
computers4ata files and applications. Therefore, it is
intuitive to present shared versions of these abstractions to
the user.

amlication application

f -* Repository-based sharing

<...> Application-based sharing

Figure 1 Collaborative shuring

Thus, there are two ways to achieve the abstraction of
sharing. One is to create a shared file and allow
collaborators to edit it independently. The other is to
create a shared application, which allows the collaborators
to see the effects of each other's action on the document in
real-time. We refer to these models as repository-based
and application-based sharing, respectively.
Our work explores new ways of implementing these two
forms of sharing mechanisms based on XML document
representation and its integration with object-oriented
technologies. The rest of this paper is organized as
follows. First, we discuss the use of XML in developing a
fine-grained repository-based sharing mechanism. Next,
we apply a similar idea to an application-based sharing
scheme, and describe an experimental implementation of
it. Finally, we summarize our results and future
extensions of this work.

0-7695-0798-9100 $10.00 O 2000 IEEE
254

mailto:sriram}@cs.unc.edu

Repository-based sharing
The OS has traditionally assumed the responsibility of
maintaining the persistent storage of all data. This opens
up the opportunity to synchronize the state of applications
using the file VO channel. Indeed, users of distributed file
systems have used repository-based sharing for many
years. Distributed file systems (DFS), such as Coda,
allow multiple users to cooperate by repeatedly loading,
modifying, and saving the same file. Moreover, Coda
supports merging of data of disconnected and weakly-
connected clients and its recent extension [11 handles
user-level operations in an attempt to improve
performance.
However, the impressive list of features in traditional
DFS comes with a relatively high cost of deployment and
maintenance. This makes them inherently unsuitable for
spontaneous collaboration over a wide-area network.
Currently, a number of freely-available products allow the
creation of an application-transparent 'Internet drive'. The
importance of these systems with respect to collaboration
is that they make wide-area sharing affordable to
practically all Internet users.
We see two major advantages in the use of DFS for
collaborative sharing:
Transparency. None of the applications has to be aware of
the sharing-all of the distribution functions are handled
automatically at a lower level.
Interoperability. The sharing mechanism is independent
of the application as all applications use the same U 0
functions and abstractions provided by the system.
One the other hand, there are some collaboration-specific
issues that DFS are not designed to deal with:
Fine-grained sharing. The unit of sharing is a whole file,
which often is inadequate if two or more users want to
work on it at the same time. Consider our editing
example: the authors would like to simultaneously work
on different sections of the document. Furthermore, they
might want to ensure that the document is consistent by
either preventing conflicting updates, or by merging non-
overlapping changes.
In the physical world, our users could, for example, work
on separate sheets of paper and then simply combine them
to get the whole paper. Surprisingly enough, current
distributed technologies do not offer such a generic
solution to the above scenario in the virtual world. The
problem has been that there was no agreed upon standard,
such as XML, for representing arbitrary structured data,
which made it infeasible to derive the data structure in a
generic way and to provide finer-grain services.
Incremental response. In general, file systems do not
provide incremental synchronization, access control,
concurrency control, and fault-tolerance. The large
overhead of file operations effectively prohibits the access
to these services incrementally.

Thus, the lack of incremental response is an inherent
problem to repository-based sharing. However, the lack of
fine-grained sharing can be overcome by breaking away
with the canonical treatment of files as opaque entities
and assuming that at least some the applications will store
their data in XML format. As we discuss in the next
section, this allows us to give better sharing services to
those applications.

XML-based repository sharing
To illustrate this approach, consider the following XML
document:
<document title="XML 1.0">
<section title="l Introduction">

<p>Extensible Markup Language ... </p>
<section title="l.l Origin and goals">

</section>
<section title="1.2 Terminology">
<p>The terminology used ... </p>

</section>

<p>XML was developed ... </p>

</section>
</document>

It presents a definite hierarchical structure that allows us
to deduce that the main document consists of smaller
units (called "section") that in turn can have even smaller
subdivisions ("section" and "p"). (This information can
also be derived from the corresponding DTD schema, if
present.)
Note that, while we still don't understand the semantics of
the data, the standard syntax permits its incremental
breakdown into smaller and smaller units. Eventually, we
reach the indivisible (leaf) units, which we must treat as
atomic entities (in this example the "p" elements). Having
derived the structure, we are now capable of providing
sharing at a much finer granularity (in fact, at variable
granularity).
Looking back at our original scenario, we are now ready
to help our collaborators edit their document in a
consistent manner by providing generic collaboration
services, such as coupling, concurrency control, and fault-
tolerance, that follow the document structure.

XML serialization
The previous section showed how XML could be used to
implement fine-grained collaboration services in an
application-neutral way. However, we expect that
applications would rarely operate directly on the textual
representation of XML data. More likely, they would
convert it into language-specific objects, process it, and
then export it back in XML format. Hence, a
marshalling/unmarshalling utility that can automate this
process would be very useful.
One way to handle these conversions is to use standard
representations, such as the DOM, that provide a one-to-
one mapping between objects (in different languages) and
XML. DOM objects are modeled after XML and any

255

application that uses it must deal with XML-specific
objects (document, schema, elements, attributes, etc.).
This raises at least two problems:
0 The DOM naming does not reflect object semantics in

the application context and, therefore, its universal usage
would distort programming style. For example, coding a
text editor with element and attribute objects is
not as intuitive as doing it with title, section, and
paragraph objects.

Existing applications need to be rewritten to comply
with the DOM in order to get the benefits of automation.
Both problems indicate that this is not an approach that
can be expected to gain widespread acceptance. In
general, we believe that any object-to-XML conversion
scheme should fulfil several requirements in order to be
successful.
Generality. The conversion scheme must handle generic
objects-not just the ones from a particular inheritance
tree;
Automation. The conversion should be done automatically
with minimal need for program modifications.
Reversibility. It must be possible to execute the reverse
XML-to-object conversion. In other words, enough
information must be retained to reconstruct the original
object in a different address space, and enough
information must be stored to resolve any potential
ambiguities in the reverse mapping.
No new language support. The solution must work with
any implementation of the underlying language. In
particular, it should not depend on specialized translators,
such as (pre-) compilers or interpreters.
To devise a solution that satisfies the above requirements,
especially the last one, we have chosen Java as our
implementation language.

A Java solution
In an ideal solution, developers' effort would be reduced
to a single method invocation of the form:
XMLSerializer.saveAsXML(rootObject,fileName)

with the expectation that the XMLSerializer would
take the rootobject, save it in the file with the specified
name (in XML), and then find all other objects to which
rootOb ject has a reference and would apply recursively
the same procedure. The recursion terminates whenever it
reaches a node in the document hierarchy that does not
refer to any objects that have not been saved already.
The idea of serializing objects to a persistent store has
been explored extensively. In Java however, the idea has
been brought a step further by embedding it into the
language in the form of a standard M I .
At a high level, Java's serialization mechanism works as
follows. Given an object tagged as Serializable, Java
allows the programmer to store it to a file, or send it over

a network connection with a single method call.
Moreover, it finds all other objects to which the original
object has references and applies the same procedure
recursively until the whole graph of related objects is
storedtransmitted.

Java object
I

Figure 2 Starting with Java object

This is very similar to what we want to achieve with the
exception that objects are not stored in XML format. To
be fair, we must say that Java provides a mechanism that
allows objects to take responsibility of their own
serialization. During the serialization process, if an object
tagged as Externalizable is encountered; Java will
invoke its writeExterna1 method to export its state.
Conversely, when the object is deserialized, its
readExterna1 method will be invoked to restore its
state. Thus, by implementing the Externalizable
interface, we can achieve conversion to/from XML and
solve our problem.
Unfortunately, this solution does not satisfy our
requirement for low programming cost as it necessitates
the modification of each and every class whose instances
must be serialized. Thus, we are a looking for a solution
similar to the standard serialization mechanism but one
that can be implemented outside the Java virtual machine.
Therefore, we must be able to derive the structure of the
object from its extemal appearance. In general, this is an
unsolvable problem so we restrict ourselves to a set of
objects called (Java) beans [2].
A bean is a collection of properties with well-defined
semantics. A property is a distinct, named attribute of an
object. It can be accessed and/or modified through a set of
dedicated methods and its value may be of any type.
Bean objects adhere to a set of programming patterns
(naming conventions) that permit the automated discovery
of their properties. Furthermore, they may expose
standard interfaces through which other objects can
receive notifications about specific changes in their state.
The standard bean conventions recognize two types of
properties: simple and indexed. A simple property is
characterized by a pair of 'get' and 'set' methods whose
purpose is to read and write the property. An indexed
property is a simple property of an array type (e.g., an
array of strings). In addition to the standard get/set
methods, which deal with the whole array, it may have
and additional pair of methods for manipulating
individual elements by their index.

A property-based solution
Let us now use the property-based view of the application
objects to support our automated object-to-XML

256

conversion. We assume that only the values of the
publicly accessible properties represent the serializable
state of the object. At first glance, this may seem like a
severe restriction, but a closer look at good programming
practices reveals that it is a valid approach.
First, we believe that the majority of current applications
are being developed using the documentkiew paradigm
in which the abstract data structure is separated from its
UI representation. For example, Microsoft's development
environments advocate this approach and generate
skeleton class files to facilitate the process. Thus, it is not
overly restrictive to consider the existence of 'data' objects
whose main purpose is to store the application's state.
Therefore, other application objects must be given access
to this information. If we follow the data-encapsulation
principle, access must be provided through dedicated
methods, and not by exposing the internal structure of the
objects. Hence, we should be able to retrieve the state of
these objects using only public methods.
Second, the use of method naming conventions (which
form the basis for property discovery) is highly desirable
from a software-engineering point of view-it greatly
simplifies the understanding, maintenance, and further
development of the application.
Finally, the serialization of public properties solves the
'fragile serialization' problem. That is, it allows two
different versions of the same object to use the same
serialized state. We believe that this is not possible to
achieve with the standard Java serialization process, as
the compiled classes do not contain enough data for the
system to make an informed decision.
Having adopted properties as our way of describing the
object state, we are now ready to define a generic
mapping between the object and its XML representation.
We map each object to an entity with a name derived
from its class name. Next, we map all properties of the
object to nested elements. To preserve the semantics of
object-to-object relationships, we need to distinguish
between literal and reference property values. The former
include numbers and strings, whereas the latter include all
object references. Literal values can be converted directly
to XML's PCDATA, but doing so for references may not
preserve the intended application semantics. To illustrate
this, consider two paragraph objects, each of which has
a style property, which is a reference to the same style
object. If we treat objects as literal values, we would end
up with two paragraph elements, each with a style
nested element. If we now do the reverse conversion, we
would have little choice but to create two equivalent but
separate objects for the style elements. Therefore, if the
application changes one of them, the other one would
remain intact, which is probably not the intended
semantics. Hence, we need to encode references
differently so that object relationships can be properly
reconstructed. We encode references, using XML's
ID/IDREF attributes, which essentially provide the

reference semantic (an IDREF attribute refers to an
element with the given ID attribute), and we can expect a
standard XML parser to handle these automatically.
Given this background, we can now follow a depth-fiist-
search-based algorithm, similar to the one implemented
by the standard serialization process, to serialize the graph
of related objects. The only difference here is that we only
consider property values when looking for referenced
objects.
The reverse conversion from XML is straightforward
given the one-to-one mapping defined above and is
omitted for the sake of brevity. The only subtlety we will
point out is that, in order to faithfully recreate the object,
we need to have the binding schema, which maps object
classes to XML elements. This information can be stored
either as part of the XML file, or as a separate entity. We
advocate the second approach as it allows the generated
XML data to be interpreted independently of the source
object. Furthermore, this leaves the option of binding the
serialized state with another (version of the) object.
Let us now focus on a couple of implicit restrictions that
result from the fact that we only use the public properties
of the object and not its internal state.
First, there is no explicit ordering among the properties of
an object. This does not present a problem in the
conversion to XML but is a potential setback in recreating
the object. A problem may occur if a given property is
dependent on another property in the same object and
setting the value of the f i s t property before the second
would cause an error, or an inconsistency. This is an
inherent problem with using object properties and cannot
be solved without specific, per-class information. For that
reason, we assume that object properties are autonomous
and can be assigned independently of each other.
Second, the unmarshalling of the object must start with
creating an instance of it. The question is: which
constructor should be used, and what argument(s) must be
supplied? Again, class-specific information could be used
to resolve the issue but we want to avoid the costly effort.
Therefore, we always use the constructor with no
arguments. To justify this we make two points here:

Constructors with arguments are a matter of
convenience and not of necessity-all classes could be
written so that they always have a constructor with no
arguments.

Wherever such constructors are missing, a trivial
(empty) implementation can be added automatically either
at the source-code level, or at class-load time by using
object instrumentation [31.

An example
To illustrate the use of =-based serialization in
distributed collaboration, consider the potential use of the
XMLDiff and Merge Tool [4] for enhancing repository-

257

based collaboration. The essential diff/merge functions
can, for example, be embedded as part of a clientkerver
system:
Whenever the server receives a put request for a particular
X M L file, the new version is automatically compared
with the existing copy and any non-conflicting changes
are merged. Similarly, the client must now take into
consideration that its copy may not be not be up-to-date,
and after saving its copy must immediately request the
document back and merge with its own version.
To outline the benefits of using fine-grained XML
services over generic file-based solutions, we compare the
above approach with the UNIX d i m tool. d i m takes as
input an original text file and two versions of it. It then
produces a script that, when applied to one of the
versions, reconciles it with the other.
Consider the integration of d i m at the server as a means
of achieving consistency between, say, two XML
documents. It can lead to two types of problems:

Discovery of irrelevant formatting differences. The
simplest example is differences in the spacing of XML
constructs. In general, those are ignored with the
exception of some data blocks.

Discarding of non-overlapping changes. For example,
very often multiple attributes of an element are defined on
the same line. Thus, if one user changes one of them,
while the other changes another, d i m will detect a
conflict and will choose one version of the line over the
other. However, a fine-grained diff/merge tool will
discover that the updates are independent and will
proceed to automatically reconcile them without
discarding user updates.

Application-based sharing
Recall that repository-based sharing is inherently
unsuitable for synchronous collaboration. Therefore,
support must be included in the application at
development time. As it turns out, XML can play an
important role in this case, too.
The idea is that the data schema of the application is not
given in terms of Java classes. Instead, it is defined by an
XML schema, for which the Java classes are derived
automatically.
The use of XML for data specification has several
advantages over other options:
Intuitive. XML is simple enough so that even non-
programmers can produce XML specifications.
Formal. Using a formal language significantly reduces the
possibility for ambiguities and misinterpretations. This is
an important advantage over using, for example, a
description written in plain English.
The described data-centric approach leads us to explore
the generation of (parts of) the collaborative application

from an XML specification. That is, we start with a DTD
schema and we generate a class representation of it. From
there on, we are free to follow the standard object-based
development process.
Note that this is a different problem than the problem of
recreating objects from their XML-serialized state (Figure
2). The differences stem from the fact that now the
schema is fixed and object representation can vary.
Therefore, we must decide on a suitable class
representation of the DTD schema, specifically its
elements and attributes. Given our property-based
approach, we have little choice but to map them both to
corresponding properties. Thus, it is no longer possible to
distinguish nested elements and attributes in this class
representation. In our view, this does not pose a problem,
unless we impose the additional requirement that object
instances of the generated classes be convertible into
XML structures conforming to their initial schema.

XML document 1 Java object
A I

Figure 3 Starting with XML specification

This optional requirement allows us to get two additional
benefits from using XML for data specification:
Interoperability. The data output of the application can
easily be shared with other XML-enabled applications.
Standard rendering. The XML data can be displayed
using a standard viewing utility, such as a web browser.
Given these advantages, we must address the ambiguity
mentioned above. To resolve the issue, we use the initial
DTD specification by reading the object properties in the
given order, and then mapping them to elements, or
attributes, according to the schema. As in the previous
mapping, we need to store the binding between the DTD
and the resulting object(s) to enable the correct XML
serialization of the object.
Our XML-to-Java binding schema has a different goal
and takes a different approach than most other
implementations. While other schemes are concerned
with fixing a standard Java representations of XML
documents, we are more interested in providing a generic
two-way conversion between XML and Java objects that
preserves the natural style of programming. Another
difference is that we are not using XML as a means of
declarative programming as it is the case with BML [51.
To the best of our knowledge, there are no other schemes
that provide a model for XML serialization of generic
objects.

I ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ - , ~ ~ ~ ~ I

XML-based application sharing
In this section, we outline the major steps involved
generating a collaborative application from an X M L data
specification. We also use a simple collaborative text

25 8

editor that we have built to demonstrate a concrete
implementation.

We start by building an appropriate DTD schema for
the application. In our case, the basic data structure is the
document so we use a simple hierarchical description of
nested sections, and paragraphs.

Next, we generate 'data' object classes that will contain
the actual run-time data on which the application will
operate. We emphasize the use of naming conventions
that closely match the names in the original DTD to
facilitate any subsequent modifications to the code.
In the example, we generate a Document class, which has
a simple title property, as well as a list of authors and a
list of sections (both indexed properties). Similarly, the
Section class is generated with a section and paragraph
indexed properties. Finally, the Paragraph class has (for
the sake of simplicity) a single text property containing
the actual text of the paragraph.

Next, using generic window components, we generate a
UI that allows the user to create, edit, and stordload the
data objects (in XML).

Finally, we combine the generated objects with generic
implementations of collaboration-specific services, such
as coupling, accesskoncurrency control, merging, and
fault-tolerance, to achieve the desired collaborative
behavior.
In our implementation, we have provided coupling and
fault-tolerance as example collaboration functions. We
should note that the discussed application was developed
manually. We are currently working on an infrastructure
that will permit the automation of collaboration services.

Related Work
Let us outline some of the main differences between our
approach and other solutions. CORBA [6] provides a
framework for inter-operating objects that are
implemented in different languages. However, its
mechanism is relatively heavyweight and requires the
individual description of every shared object.
On the other hand, platforms, such as XML-RPC [7] and
SOAP, simply extend the original idea of RPC by using
open standards (XML/HTTP) for their implementations.
KOML [8] is most closely related to our work, however,
its approach is tied to the specifics of the Java
serialization format.

Summary and future work
In this work we showed two different ways to utilize
X M L for the purposes of distributed collaborative
applications. The first one enhances existing
asynchronous, repository-based sharing by adding fine-
grained collaboration services. The second one enables
the generation of synchronous collaborative applications
from a generic XML schema. We argued that using XML

for data specification provides users with an intuitive, yet
formal way of starting application development.
Furthermore it can help in inter-operating different
applications and displaying application data with a
generic viewer.
We showed that the successful implementation of both of
these schemes hinges on the solution of a more general
problem-the generic mapping between XML data
constructs and objects. We gave two such mappings, both
based on the bean property model. We motivated the
differences between the two approaches by showing the
different requirements they must satisfy.
In this paper, the presented implementation work is
limited to the generation of class files based from a DTD
schema. We would like to extend this and build an
implementation that allows instances of these classes to
be serialized in XML. We would also like to build a
prototype implementation of the presented XML-based
repository sharing mechanism.
Another direction for our ongoing research is concerned
with overcoming the limitations imposed by the bean
property model. Space limitations do not permit us to
discuss them here in detail but we should not that,
currently, many objects cannot be adequately described
with simple and indexed properties. For example, the
standard Vector and Hashtable classes have no
identifiable properties.
Therefore, we are working on extending the bean model
to incorporate other types of properties. Our extension is
based on the idea of flexible specification and recognition
of properties using programming patterns.

Acknowledgements
The reviewers gave several helpful suggestions for
improving the quality of this presentation. This research
was sponsored in part by National Science Foundation
grants IRI-9627619,IIS-9977362, and CDA-9624662.

References
1.

2.

3.

4.

5 .

6 .
7.
8.

Lee, Y., Leung, K., Satyanarayanan, M. Operation-based
Update Propagation in a Mobile File System. in USENIX.
1999. Monterey, CA, USA.
Hamilton, G., JavaBeans Specification. 1997, Sun
Microsystems.
Cohen, G., Chase, J. Automatic Program Transformation
with JIOE. in USENIX Annual Technical Symposium. 1998.
Birsan, D., Sluiman, H., Femz, S . , XML Difand Merge
Tool (http://www.alphaWorks. ibm.com). 1999.
Weerawarana, S . , Duftler, M., BML
(http://www.alphaworks. ibm.codtecMm1). 1999.
http://www. corba. org .
http://www.xmlrpc.com.
http://www-sop. inria. fr/koala/koml/.

259

http://www.alphaWorks
http://www.alphaworks
http://www
http://www.xmlrpc.com
http://www-sop

